Sébastien Côté
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sébastien Côté.
Chemical Reviews | 2015
Jessica Nasica-Labouze; Phuong H. Nguyen; Fabio Sterpone; Olivia Berthoumieu; Nicolae-Viorel Buchete; Sébastien Côté; Alfonso De Simone; Andrew J. Doig; Peter Faller; Angel E. Garcia; Alessandro Laio; Mai Suan Li; Simone Melchionna; Normand Mousseau; Yuguang Mu; Anant K. Paravastu; Samuela Pasquali; David J. Rosenman; Birgit Strodel; Bogdan Tarus; John H. Viles; Tong Zhang; Chunyu Wang; Philippe Derreumaux
Simulations Complement Experimental Studies Jessica Nasica-Labouze,† Phuong H. Nguyen,† Fabio Sterpone,† Olivia Berthoumieu,‡ Nicolae-Viorel Buchete, Sebastien Cote, Alfonso De Simone, Andrew J. Doig, Peter Faller,‡ Angel Garcia, Alessandro Laio, Mai Suan Li, Simone Melchionna, Normand Mousseau, Yuguang Mu, Anant Paravastu, Samuela Pasquali,† David J. Rosenman, Birgit Strodel, Bogdan Tarus,† John H. Viles, Tong Zhang,†,▲ Chunyu Wang, and Philippe Derreumaux*,†,□ †Laboratoire de Biochimie Theorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Universite Paris Diderot, Sorbonne Paris Cite, 13 rue Pierre et Marie Curie, 75005 Paris, France ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Universite de Toulouse, Universite Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France School of Physics & Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4, Ireland Deṕartement de Physique and Groupe de recherche sur les proteines membranaires (GEPROM), Universite de Montreal, C.P. 6128, succursale Centre-ville, Montreal, Quebec H3C 3T5, Canada Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom Department of Physics, Applied Physics, & Astronomy, and Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University (FAMU-FSU) College of Engineering, 2525 Pottsdamer Street, Tallahassee, Florida 32310, United States National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Julich GmbH, 52425 Julich, Germany School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom Institut Universitaire de France, 75005 Paris, France
Journal of Physical Chemistry B | 2012
Sébastien Côté; Rozita Laghaei; Philippe Derreumaux; Normand Mousseau
The Amyloid-beta protein is related to Alzheimers disease, and various experiments have shown that oligomers as small as the dimer are cytotoxic. Two alloforms are mainly produced: Aβ(1-40) and Aβ(1-42). They have very different oligomer distributions, and it was recently suggested, from experimental studies, that this variation may originate from structural differences in their dimer structures. Little structural information is available on the Aβ dimer, however, and to complement experimental observations, we simulated the folding of the wild-type Aβ(1-40) and Aβ(1-42) dimers as well as the mutated Aβ(1-40)(D23N) dimer using an accurate coarse-grained force field coupled to Hamiltonian-temperature replica exchange molecular dynamics. The D23N variant impedes the salt-bridge formation between D23 and K28 seen in the wild-type Aβ, leading to very different fibrillation properties and final amyloid fibrils. Our results show that the Aβ(1-42) dimer has a higher propensity than the Aβ(1-40) dimer to form β-strands at the central hydrophobic core (residues 17-21) and at the C-terminal (residues 30-42), which are two segments crucial to the oligomerization of Aβ. The free energy landscape of the Aβ(1-42) dimer is also broader and more complex than that of the Aβ(1-40) dimer. Interestingly, D23N also impacts the free energy landscape by increasing the population of configurations with higher β-strand propensities when compared against Aβ(40). In addition, while Aβ(1-40)(D23N) displays a higher β-strand propensity at the C-terminal, its solvent accessibility does not change with respect to the wild-type sequence. Overall, our results show the strong impact of the two amino acids Ile41-Ala42 and the salt-bridge D23-K28 on the folding of the Aβ dimer.
Journal of Chemical Theory and Computation | 2011
Sébastien Côté; Philippe Derreumaux; Normand Mousseau
Numerous experimental studies indicate that amyloid beta protein (Aβ) oligomers as small as dimers trigger Alzheimers disease. Precise solution conformation of Aβ monomer is missing since it is highly dynamic and aggregation prone. Such a knowledge is however crucial to design drugs inhibiting oligomers and fibril formation. Here, we determine the equilibrium structures of the Aβ1-40, Aβ1-42, and Aβ1-40(D23N) monomers using an accurate coarse-grained force field coupled to Hamiltonian-temperature replica exchange molecular dynamics simulations. We observe that even if these three alloforms are mostly disordered at the monomeric level, in agreement with experiments and previous simulations on Aβ1-40 and Aβ1-42, striking morphological differences exist. For instance, Aβ1-42 and Aβ1-40(D23N) have higher β-strand propensities at the C-terminal, residues 30-42, than Aβ1-40. The D23N mutation enhances the conformational freedom of the residues 22-29 and the propensity for turns and β-strands in the other regions. It also changes the network of contacts; the N-terminal (residues 1-16) becoming more independent from the rest of the protein, leading to a less compact morphology than the wild-type sequence. These structural properties could explain in part why the kinetics and the final amyloid products vary so extensively between the Aβ1-40 and the Aβ1-40(D23N) peptides.
Developmental Neurobiology | 2013
Edna Brustein; Sébastien Côté; Julien Ghislain; Pierre Drapeau
Glycine and GABA are depolarizing during early development, but the purpose of this paradoxical chloride‐mediated depolarization remains unclear, especially at early stages. It was previously reported that suppressing glycine signaling from the beginning of development in zebrafish embryos caused an abnormal maintenance of the progenitor population and a specific reduction of spinal interneurons but not of other cell populations. Here, we show that cells including progenitors in the embryonic spinal cord had occasional spontaneous, glycine‐mediated calcium transients that were blocked by the glycine antagonist strychnine and the L‐type calcium channel blocker nifedipine. As shown previously for chronic block by strychnine, block of these transients by nifedipine reduced interneuron differentiation. Our results indicate that glycinergic depolarization of neural progenitors evokes spontaneous calcium transients that may enhance the interneuron neurogenic program.
Journal of Physical Chemistry B | 2015
Cong Guo; Sébastien Côté; Normand Mousseau; Guanghong Wei
Islet amyloid polypeptide, IAPP or amylin, is a 37-residue peptide hormone coexpressed with insulin by pancreatic β-cells. The aggregation of human IAPP (hIAPP) into amyloid deposits is associated with type II diabetes. Substantial evidence suggests that the interaction of anionic membranes with hIAPP may facilitate peptide aggregation and the N-terminal 1-19 fragment (IAPP(1-19)) plays an important role in peptide-membrane interaction. As a first step to understand how structural differences between human and rat IAPP peptides in membranes may influence the later oligomerization process, we have investigated the structures and orientations of hIAPP(1-19) and the less toxic rIAPP(1-19) (i.e., the H18R mutant of hIAPP(1-19)) monomers in anionic POPG bilayers by performing replica exchange molecular dynamics (REMD) simulations. On the basis of ∼20 μs REMD simulations started from a random coil conformation of the peptide placed in water, we find that unfolded h(r)IAPP(1-19) can insert into the bilayers and the membrane-bound peptide stays mainly at the lipid head-tail interface. hIAPP(1-19) displays higher helix propensity than rIAPP(1-19), especially in the L12-L16 region. The helix is oriented parallel to the bilayer surface and buried in the membrane 0.3-0.8 nm below the phosphorus atoms, consistent with previous electron paramagnetic resonance data. The helical conformation is an amphiphilic helix with its hydrophilic and hydrophobic faces pointing, respectively, to the lipid head and tail regions. The H18R substitution enhances the electrostatic interactions of IAPP(1-19) with the membrane, while it weakens the intrapeptide interactions crucial for helix formation, thus leading to lower helix propensity of rIAPP(1-19). Implications of our simulation results on the membrane-mediated IAPP(1-19) oligomerization are discussed.
Journal of Physical Chemistry B | 2012
Sébastien Côté; Guanghong Wei; Normand Mousseau
Several neurodegenerative diseases are associated with the polyglutamine (polyQ) repeat disorder in which a segment of consecutive glutamines in the native protein is produced with too many glutamines. Huntingtons disease, for example, is related to the misfolding of the Huntingtin protein which occurs when the polyQ segment has more than approximately 36 glutamines. Experimentally, it is known that the polyQ segment alone aggregates into β-rich conformations such as amyloid fibrils. Its aggregation is modulated by the number of glutamine residues as well as by the surrounding amino acid sequences such as the 17-amino-acid N-terminal fragment of Huntingtin which increases the aggregation rate. Little structural information is available, however, regarding the first steps of aggregation and the atomistic mechanisms of oligomerization are yet to be described. Following previous coarse-grained replica-exchange molecular dynamics simulations that show the spontaneous formation of a nanotube consisting of two intertwined antiparallel strands (Laghaei, R.; Mousseau, N. J. Chem. Phys. 2010, 132, 165102), we study this configuration and some extensions of it using all-atom explicit solvent MD simulations. We compare two different lengths for the polyQ segment, 40 and 30 glutamines, and we investigate the impact of the Huntingtin N-terminal residues (htt(NT)). Our results show that the dimeric nanotubes can provide a building block for the formation of longer nanotubes (hexamers and octamers). These longer nanotubes are characterized by large β-sheet propensities and a small solvent exposure of the main-chain atoms. Moreover, the oligomerization between two nanotubes occurs through the formation of protein/protein H-bonds and can result in an elongation of the water-filled core. Our results also show that the htt(NT) enhances the structural stability of the β-rich seeds, suggesting a new mechanism by which it can increase the aggregation rate of the amyloidogenic polyQ sequence.
Developmental Neurobiology | 2012
Sébastien Côté; Pierre Drapeau
Glycine and γ‐aminobutyric acid (GABA) are depolarizing during early development but the purpose is unclear. We tested the effect of altering glycine signaling in zebrafish embryos by overexpressing the potassium‐chloride co‐transporter type 2 (KCC2) to reverse the chloride gradient or by blocking glycine receptors with strychnine or by selectively knocking down the embryonic glycine receptor (GlyR KD). Using a variety of markers we observed in all three cases a reduction of all types of spinal interneuron populations examined, indicating that glycine modulates their overall differentiation rather than choice of cell fate. Other cell populations (motor, sensory, and glial cells) were unaffected. As glycine appeared to act preceding neural and synaptic development, we examined the bandoneon (beo) mutant in which glycine receptors are functional but not clustered at synapses. Neural populations in beo embryos appeared normal, suggesting a paracrine action of circulating glycine in promoting interneuron differentiation.
Biophysical Journal | 2015
Sébastien Côté; Vincent Binette; Evgeniy S. Salnikov; Burkhard Bechinger; Normand Mousseau
Mislocalization and aggregation of the huntingtin protein are related to Huntingtons disease. Its first exon-more specifically the first 17 amino acids (Htt17)-is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtins activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties-order parameter, thickness, and area per lipid-of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions.
Biophysical Journal | 2016
Vincent Binette; Sébastien Côté; Normand Mousseau
The first exon of Huntingtin-a protein with multiple biological functions whose misfolding is related to Huntingtons disease-modulates its localization, aggregation, and function within the cell. It is composed of a 17-amino-acid amphipathic segment (Htt17), an amyloidogenic segment of consecutive glutamines (QN), and a proline-rich segment. Htt17 is of fundamental importance: it serves as a membrane anchor to control the localization of huntingtin, it modulates huntingtins function through posttranslational modifications, and it controls the self-assembly of the amyloidogenic QN segment into oligomers and fibrils. Experimentally, the conformational ensemble of the Htt17 monomer, as well as the impact of the polyglutamine and proline-rich segments, remains, however, mostly uncharacterized at the atomic level due to its intrinsic flexibility. Here, we unveil the free-energy landscape of Htt17, Htt17Q17, and Htt17Q17P11 using Hamiltonian replica exchange combined with well-tempered metadynamics. We characterize the free-energy landscape of these three fragments in terms of a few selected collective variables. Extensive simulations reveal that the free energy of Htt17 is dominated by a broad ensemble of configurations that agree with solution NMR chemical shifts. Addition of Q17 at its carboxy-terminus reduces the extent of the main basin to more extended configurations of Htt17 with lower helix propensity. Also, the aliphatic carbons of Q17 partially sequester the nonpolar amino acids of Htt17. For its part, addition of Q17P11 shifts the overall landscape to a more extended and helical Htt17 stabilized by interactions with Q17 and P11, which almost exclusively form a PPII-helix, as well as by intramolecular H-bonds and salt bridges. Our characterization of Huntingtins amino-terminus provides insights into the structural origin of its ability to oligomerize and interact with phospholipid bilayers, processes closely linked to the biological functions of this protein.
Proteins | 2014
Sébastien Côté; Guanghong Wei; Normand Mousseau