Sébastien Desgent
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sébastien Desgent.
PLOS ONE | 2012
Sébastien Desgent; Sandra Duss; Nathalie T. Sanon; Pablo Lema; Maxime Lévesque; David Hébert; Rose-Marie Rébillard; Karine Bibeau; Michèle Brochu; Lionel Carmant
During development, the risk of developing mesial temporal lobe epilepsy (MTLE) increases when the developing brain is exposed to more than one insult in early life. Early life insults include abnormalities of cortical development, hypoxic-ischemic injury and prolonged febrile seizures. To study epileptogenesis, we have developed a two-hit model of MTLE characterized by two early-life insults: a freeze lesion-induced cortical malformation at post-natal day 1 (P1), and a prolonged hyperthermic seizure (HS) at P10. As early life stressors lead to sexual dimorphism in both acute response and long-term outcome, we hypothesized that our model could lead to gender-based differences in acute stress response and long-term risk of developing MTLE. Male and female pups underwent a freeze-lesion induced cortical microgyrus at P1 and were exposed to HS at P10. Animals were monitored by video-EEG from P90 to P120. Pre and post-procedure plasma corticosterone levels were used to measure stress response at P1 and P10. To confirm the role of sex steroids, androgenized female pups received daily testosterone injections to the mother pre-natally and post-natally for nine days while undergoing both insults. We demonstrated that after both insults females did not develop MTLE while all males did. This correlated with a rise in corticosterone levels at P1 following the lesion in males only. Interestingly, all androgenized females showed a similar rise in corticosterone at P1, and also developed MTLE. Moreover, we found that the cortical lesion significantly decreased the latency to generalized convulsion during hyperthermia at P10 in both genders. The cortical dysplasia volumes at adulthood were also similar between male and female individuals. Our data demonstrate sexual dimorphism in long-term vulnerability to develop epilepsy in the lesion + hyperthermia animal model of MTLE and suggest that the response to early-life stress at P1 contributes significantly to epileptogenesis in a gender-specific manner.
Journal of Chemical Neuroanatomy | 2005
Denis Boire; Sébastien Desgent; Isabelle Matteau; Maurice Ptito
The laminar distribution of several distinct populations of neurofilament protein containing neurons has been used as a criterion for the delineation of cortical areas in hamsters. SMI-32 is a monoclonal antibody that recognizes a non-phosphorylated epitope on the medium- and high-molecular weight subunits of neurofilament proteins. As in carnivores and primates, SMI-32 immunoreactivity in the hamster neocortex was present in cell bodies, proximal dendrites and axons of some medium and large pyramidal neurons located in cortical layers III, V and VI. A small population of labeled multipolar cells was also found in layer IV. Neurofilament protein immunoreactive neurons were found throughout isocortical areas. Very few labeled cells were encountered in supplemental motor area, insular cortex, medial portion of associative visual cortex and in parietal association cortex. Our data indicate that SMI-32 immunoreactive cells can be efficiently used to trace boundaries between neocortical areas in the hamsters brain. The regional distribution SMI-32 immunoreactivity in the hamster cortex corresponds quite closely with cortical areas as defined by their cytoarchitecture and myeloarchitecture. The primary sensory cortical areas contain the most intense of SMI-32 immunoreactivity and are also those with the highest density of myelinated axons. Very low SMI-32 immunoreactivity was found in orbital, insular, perirhinal, cingulate and infralimbic cortices, which are also poor in myelinated axons. This supports the association between SMI-32 immunoreactivity and myelin contents.
Neurobiology of Disease | 2011
Steve A. Gibbs; Bidisha Chattopadhyaya; Sébastien Desgent; Patricia N. Awad; Olivier Clerk-Lamalice; Maxime Lévesque; Rose-Mari Vianna; Rose-Marie Rébillard; Andrée-Anne Delsemme; David Hébert; Luc Tremblay; Martin Lepage; Laurent Descarries; Graziella Di Cristo; Lionel Carmant
Clinical evidence suggests that febrile status epilepticus (SE) in children can lead to acute hippocampal injury and subsequent temporal lobe epilepsy. The contribution of febrile SE to the mechanisms underlying temporal lobe epilepsy are however poorly understood. A rat model of temporal lobe epilepsy following hyperthermic SE was previously established in our laboratory, wherein a focal cortical lesion induced at postnatal day 1 (P1), followed by a hyperthermic SE (more than 30 min) at P10, leads to hippocampal atrophy at P22 (dual pathology model) and spontaneous recurrent seizures (SRS) with mild visuospatial memory deficits in adult rats. The goal of this study was to identify the long term electrophysiological, anatomical and molecular changes in this model. Following hyperthermic SE, all cortically lesioned pups developed progressive SRS as adults, characterized by the onset of highly rhythmic activity in the hippocampus. A reduction of hippocampal volume on the side of the lesion preceded the SRS and was associated with a loss of hippocampal neurons, a marked decrease in pyramidal cell spine density, an increase in the hippocampal levels of NMDA receptor NR2A subunit, but no significant change in GABA receptors. These findings suggest that febrile SE in the abnormal brain leads to hippocampal injury that is followed by progressive network reorganization and molecular changes that contribute to the epileptogenesis as well as the observed memory deficits.
Neural Plasticity | 2012
Sébastien Desgent; Maurice Ptito
Early loss of a given sensory input in mammals causes anatomical and functional modifications in the brain via a process called cross-modal plasticity. In the past four decades, several animal models have illuminated our understanding of the biological substrates involved in cross-modal plasticity. Progressively, studies are now starting to emphasise on cell-specific mechanisms that may be responsible for this intermodal sensory plasticity. Inhibitory interneurons expressing γ-aminobutyric acid (GABA) play an important role in maintaining the appropriate dynamic range of cortical excitation, in critical periods of developmental plasticity, in receptive field refinement, and in treatment of sensory information reaching the cerebral cortex. The diverse interneuron population is very sensitive to sensory experience during development. GABAergic neurons are therefore well suited to act as a gate for mediating cross-modal plasticity. This paper attempts to highlight the links between early sensory deprivation, cortical GABAergic interneuron alterations, and cross-modal plasticity, discuss its implications, and further provide insights for future research in the field.
Neuroscience | 2010
Sébastien Desgent; Denis Boire; Maurice Ptito
In the present study, we tested the hypothesis that the expression of calcium binding proteins (CaBPs), parvalbumin (PV), calretinin (CR) and calbindin (CB), is dependent upon sensory experience as emphasized in visual deprivation and deafferentation studies. The expression of CaBPs was studied in interneurons within the primary and extrastriate visual cortices (V1, V2M, V2L) and auditory cortex (AC) of adult hamsters enucleated at birth. The effects of enucleation were mainly confined to area V1 where there was a significant volume reduction (26%) and changes in the laminar distribution of PV and CB immunoreactive (IR) cells. The density of PV-IR cell bodies was significantly increased in layer IV and reduced in layer V. Moreover, the density of CB-IR neurons was inferior in layer V of V1 in enucleated hamsters (EH) compared to controls. These results suggest that some features of the laminar distribution of specific CaBPs, in primary sensory cortices, are dependent upon or modulated by sensory input.
Epilepsy Research and Treatment | 2012
Nathalie T. Sanon; Sébastien Desgent; Lionel Carmant
Febrile seizures occurring in the neonatal period, especially when prolonged, are thought to be involved in the later development of mesial temporal lobe epilepsy (mTLE) in children. The presence of an often undetected, underlying cortical malformation has also been reported to be implicated in the epileptogenesis process following febrile seizures. This paper highlights some of the various animal models of febrile seizures and of cortical malformation and portrays a two-hit model that efficiently mimics these two insults and leads to spontaneous recurrent seizures in adult rats. Potential mechanisms are further proposed to explain how these two insults may each, or together, contribute to network hyperexcitability and epileptogenesis. Finally the clinical relevance of the two-hit model is briefly discussed in light of a therapeutic and preventive approach to mTLE.
Neurobiology of Disease | 2016
Patricia N. Awad; Nathalie T. Sanon; Bidisha Chattopadhyaya; Josianne Nuñes Carriço; Mohamed Ouardouz; Jonathan Gagné; Sandra Duss; Daniele Wolf; Sébastien Desgent; Laura Cancedda; Lionel Carmant; Graziella Di Cristo
Atypical febrile seizures are considered a risk factor for epilepsy onset and cognitive impairments later in life. Patients with temporal lobe epilepsy and a history of atypical febrile seizures often carry a cortical malformation. This association has led to the hypothesis that the presence of a cortical dysplasia exacerbates febrile seizures in infancy, in turn increasing the risk for neurological sequelae. The mechanisms linking these events are currently poorly understood. Potassium-chloride cotransporter KCC2 affects several aspects of neuronal circuit development and function, by modulating GABAergic transmission and excitatory synapse formation. Recent data suggest that KCC2 downregulation contributes to seizure generation in the epileptic adult brain, but its role in the developing brain is still controversial. In a rodent model of atypical febrile seizures, combining a cortical dysplasia and hyperthermia-induced seizures (LHS rats), we found a premature and sustained increase in KCC2 protein levels, accompanied by a negative shift of the reversal potential of GABA. In parallel, we observed a significant reduction in dendritic spine size and mEPSC amplitude in CA1 pyramidal neurons, accompanied by spatial memory deficits. To investigate whether KCC2 premature overexpression plays a role in seizure susceptibility and synaptic alterations, we reduced KCC2 expression selectively in hippocampal pyramidal neurons by in utero electroporation of shRNA. Remarkably, KCC2 shRNA-electroporated LHS rats show reduced hyperthermia-induced seizure susceptibility, while dendritic spine size deficits were rescued. Our findings demonstrate that KCC2 overexpression in a compromised developing brain increases febrile seizure susceptibility and contribute to dendritic spine alterations.
computer vision and pattern recognition | 2011
Guillaume-Alexandre Bilodeau; Ramla Ghali; Sébastien Desgent; Pierre Langlois; Rana Farah; Pier-Luc St-Onge; Sandra Duss; Lionel Carmant
This paper presents a method to track an animal in low-contrast thermographic images in order to obtain its body temperature. This work was done in the context of the study of atypical febrile seizures. To solve this tracking problem, we propose a method based on morphological operations on the area to track using regions resulting from consecutive frame differences. A Gaussian model is then used to classify tracked area pixels into animal and background pixels to further remove outliers. The temperature of the animal is taken as the mean of the tracked area. Experimental results show that we obtain, in general, temperature estimation within 1°C from ground-truth for videos as long as 16000 frames.
Journal of Clinical Investigation | 2018
Hania Kebir; Lionel Carmant; François Fontaine; Kathie Béland; Ciprian M. Bosoi; Nathalie T. Sanon; Jorge Ivan Alvarez; Sébastien Desgent; Camille L. Pittet; David Hébert; Marie-Josée Langlois; Rose-Marie Rébillard; Dang K. Nguyen; Cécile Cieuta-Walti; Gregory L. Holmes; Howard P. Goodkin; John R. Mytinger; Mary Connolly; Alexandre Prat; Elie Haddad
Rasmussen’s encephalitis (RE) is a chronic inflammatory brain disorder that causes frequent seizures and unilateral hemispheric atrophy with progressive neurological deficits. Hemispherectomy remains the only treatment that leads to seizure freedom for this refractory epileptic syndrome. The absence of an animal model of disease has been a major obstacle hampering the development of effective therapies. Here, we describe an experimental mouse model that shares several clinical and pathological features with the human disease. Immunodeficient mice injected with peripheral blood mononuclear cells from RE patients and monitored by video electroencephalography developed severe seizures of cortical origin and showed intense astrogliosis and accumulation of human IFN-&ggr;– and granzyme B–expressing T lymphocytes in the brain compared with mice injected with immune cells from control subjects. We also provide evidence for the efficacy of &agr;4 integrin blockade, an approved therapy for the treatment of multiple sclerosis and Crohn’s disease, in reducing inflammatory markers associated with RE in the CNS. This model holds promise as a valuable tool for understanding the pathology of RE and for developing patient-tailored experimental therapeutics.
Journal of multidisciplinary healthcare | 2014
Muhammad Tariqus Salam; Sébastien Gélinas; Sébastien Desgent; Sandra Duss; Félix Bernier Turmel; Lionel Carmant; Mohamad Sawan; Dang Khoa Nguyen
Background Intracranial electroencephalography (EEG) studies are widely used in the presurgical evaluation of drug-refractory patients with partial epilepsy. Because chronic implantation of intracranial electrodes carries a risk of infection, hemorrhage, and edema, it is best to limit the number of electrodes used without compromising the ability to localize the epileptogenic zone (EZ). There is always a risk that an intracranial study may fail to identify the EZ because of suboptimal coverage. We present a new subdural electrode design that will allow better sampling of suspected areas of epileptogenicity with lower risk to patients. Method Impedance of the proposed electrodes was characterized in vitro using electrochemical impedance spectroscopy. The appearance of the novel electrodes on magnetic resonance imaging (MRI) was tested by placing the electrodes into a gel solution (0.9% NaCl with 14 g gelatin). In vivo neural recordings were performed in male Sprague Dawley rats. Performance comparisons were made using microelectrode recordings from rat cortex and subdural/depth recordings from epileptic patients. Histological examinations of rat brain after 3-week icEEG intracerebral electroencephalography (icEEG) recordings were performed. Results The in vitro results showed minimum impedances for optimum choice of pure gold materials for electrode contacts and wire. Different attributes of the new electrodes were identified on MRI. The results of in vivo recordings demonstrated signal stability, 50% noise reduction, and up to 6 dB signal-to-noise ratio (SNR) improvement as compared to commercial electrodes. The wireless icEEG recording system demonstrated on average a 2% normalized root-mean-square (RMS) deviation. Following the long-term icEEG recording, brain histological results showed no abnormal tissue reaction in the underlying cortex. Conclusion The proposed subdural electrode system features attributes that could potentially translate into better icEEG recordings and allow sampling of large of areas of epileptogenicity at lower risk to patients. Further validation for use in humans is required.