Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sébastien L. Degorce is active.

Publication


Featured researches published by Sébastien L. Degorce.


Journal of Medicinal Chemistry | 2015

Discovery of (R)-8-(1-(3,5-difluorophenylamino)ethyl)-N,N-dimethyl-2-morpholino-4-oxo-4H-chromene-6-carboxamide (AZD8186): a potent and selective inhibitor of PI3Kβ and PI3Kδ for the treatment of PTEN-deficient cancers.

Bernard Christophe Barlaam; Sabina Cosulich; Sébastien L. Degorce; Martina Fitzek; Stephen J. Green; Urs Hancox; Christine Lambert-van der Brempt; Jean-Jacques Marcel Lohmann; Mickaël Maudet; Rémy Morgentin; Marie-Jeanne Pasquet; Aurélien Péru; Patrick Ple; Twana Saleh; Michel Vautier; Michael J. Walker; Lara Ward; Nicolas Warin

Several studies have highlighted the dependency of PTEN deficient tumors to PI3Kβ activity and specific inhibition of PI3Kδ has been shown activity against human B-cell cancers. We describe the discovery and optimization of a series of 8-(1-anilino)ethyl)-2-morpholino-4-oxo-4H-chromene-6-carboxamides as PI3Kβ/δ inhibitors, which led to the discovery of the clinical candidate 13, also known as AZD8186. On the basis of the lower lipophilicity of the chromen-4-one core compared to the previously utilized pyrido[1,2-a]pyrimid-4-one core, this series of compounds displayed high metabolic stability and suitable physical properties for oral administration. Compound 13 showed profound pharmacodynamic modulation of p-Akt in PTEN-deficient PC3 prostate tumor bearing mice after oral administration and showed complete inhibition of tumor growth in the mouse PTEN-deficient PC3 prostate tumor xenograft model. 13 was selected as a clinical candidate for treatment of PTEN-deficient cancers and has recently entered phase I clinical trials.


Journal of Medicinal Chemistry | 2015

Investigation of (E)-3-[4-(2-Oxo-3-aryl-chromen-4-yl)oxyphenyl]acrylic Acids as Oral Selective Estrogen Receptor Down-Regulators

Sébastien L. Degorce; Andrew Bailey; Rowena Callis; Chris De Savi; Richard Ducray; Gillian M. Lamont; Philip A. MacFaul; Mickaël Maudet; Scott Martin; Rémy Morgentin; Richard A. Norman; Aurélien Péru; Jennifer H. Pink; Patrick Ple; Bryan Roberts; James S. Scott

A novel estrogen receptor down-regulator, 7-hydroxycoumarin (5, SS5020), has been reported with antitumor effects against chemically induced mammary tumors. Here, we report on our own investigation of 7-hydroxycoumarins as potential selective estrogen receptor down-regulators, which led us to the discovery of potent down-regulating antagonists, such as 33. Subsequent optimization and removal of the 7-hydroxy group led to coumarin 59, which had increased potency and improved rat bioavailability relative to SS5020.


Journal of Medicinal Chemistry | 2016

Discovery of Novel 3-Quinoline Carboxamides as Potent, Selective and Orally Bioavailable Inhibitors of Ataxia Telangiectasia Mutated (Atm) Kinase.

Sébastien L. Degorce; Bernard Christophe Barlaam; Elaine Cadogan; Allan Dishington; Richard Ducray; Steven C. Glossop; Lorraine Hassall; Franck Lach; Alan Lau; Thomas M. McGuire; Thorsten Nowak; Gilles Ouvry; Kurt Gordon Pike; Andrew G. Thomason

A novel series of 3-quinoline carboxamides has been discovered and optimized as selective inhibitors of the ataxia telangiectasia mutated (ATM) kinase. From a modestly potent HTS hit (4), we identified molecules such as 6-[6-(methoxymethyl)-3-pyridinyl]-4-{[(1R)-1-(tetrahydro-2H-pyran-4-yl)ethyl]amino}-3-quinolinecarboxamide (72) and 7-fluoro-6-[6-(methoxymethyl)pyridin-3-yl]-4-{[(1S)-1-(1-methyl-1H-pyrazol-3-yl)ethyl]amino}quinoline-3-carboxamide (74) as potent and highly selective ATM inhibitors with overall ADME properties suitable for oral administration. 72 and 74 constitute excellent oral tools to probe ATM inhibition in vivo. Efficacy in combination with the DSB-inducing agent irinotecan was observed in a disease relevant model.


Journal of Medicinal Chemistry | 2015

Structure-Based Design of Potent and Selective Inhibitors of the Metabolic Kinase PFKFB3

Scott Boyd; Joanna Brookfield; Susan E. Critchlow; Iain A. Cumming; Nicola Curtis; J.E. Debreczeni; Sébastien L. Degorce; Craig S. Donald; Nicola J. Evans; Sam D. Groombridge; Philip Hopcroft; Neil P. Jones; Jason Grant Kettle; Scott Lamont; Hilary J. Lewis; Philip MacFaull; Sheila McLoughlin; Laurent Jean Martin Rigoreau; James M. Smith; Steve St-Gallay; Julie K. Stock; Andrew P. Turnbull; Edward Wheatley; Jon Winter; Jonathan Wingfield

A weak screening hit with suboptimal physicochemical properties was optimized against PFKFB3 kinase using critical structure-guided insights. The resulting compounds demonstrated high selectivity over related PFKFB isoforms and modulation of the target in a cellular context. A selected example demonstrated exposure in animals following oral dosing. Examples from this series may serve as useful probes to understand the emerging biology of this metabolic target.


Bioorganic & Medicinal Chemistry Letters | 2014

Discovery of 9-(1-anilinoethyl)-2-morpholino-4-oxo-pyrido[1,2-a]pyrimidine-7-carboxamides as PI3Kβ/δ inhibitors for the treatment of PTEN-deficient tumours

Bernard Barlaam; Sabina Cosulich; Sébastien L. Degorce; Martina Fitzek; Fabrizio Giordanetto; Stephen Green; Tord Inghardt; Laurent Francois Andre Hennequin; Urs Hancox; Christine Lambert-van der Brempt; Rémy Morgentin; Sarah L. Pass; Patrick Ple; Twana Saleh; Lara Ward

Starting from TGX-221, we designed a series of 9-(1-anilinoethyl)-2-morpholino-4-oxo-pyrido[1,2-a]pyrimidine-7-carboxamides as potent and selective PI3Kβ/δ inhibitors. Structure-activity relationships and structure-property relationships around the aniline and the amide substituents are discussed. We identified compounds 17 and 18, which showed profound pharmacodynamic modulation of phosphorylated Akt in the PC3 prostate tumour xenograft, after a single oral dose. Compound 17 also gave significant inhibition of tumour growth in the PC3 prostate tumour xenograft model after chronic oral dosing.


ACS Medicinal Chemistry Letters | 2016

Tetrahydroisoquinoline Phenols: Selective Estrogen Receptor Downregulator Antagonists with Oral Bioavailability in Rat

James S. Scott; Andrew Bailey; Robert D. M. Davies; Sébastien L. Degorce; Philip A. MacFaul; Helen Gingell; Thomas A. Moss; Richard A. Norman; Jennifer H. Pink; Alfred A. Rabow; Bryan Roberts; Peter D. Smith

A series of tetrahydroisoquinoline phenols was modified to give an estrogen receptor downregulator-antagonist profile. Optimization around the core, alkyl side chain, and pendant aryl ring resulted in compounds with subnanomolar levels of potency. The phenol functionality was shown to be required to achieve highly potent compounds, but unusually this was compatible with obtaining high oral bioavailabilities in rat.


Bioorganic & Medicinal Chemistry Letters | 2016

Discovery of a series of 8-(2,3-dihydro-1,4-benzoxazin-4-ylmethyl)-2-morpholino-4-oxo-chromene-6-carboxamides as PI3Kβ/δ inhibitors for the treatment of PTEN-deficient tumours

Bernard Barlaam; Sabina Cosulich; Sébastien L. Degorce; Martina Fitzek; Stephen Green; Urs Hancox; Christine Lambert-van der Brempt; Jean-Jacques Marcel Lohmann; Mickaël Maudet; Rémy Morgentin; Aurélien Péru; Patrick Ple; Twana Saleh; Lara Ward; Nicolas Warin

We report the discovery and optimisation of a series of 8-(2,3-dihydro-1,4-benzoxazin-4-ylmethyl)-2-morpholino-4-oxo-chromene-6-carboxamides, leading to compound 16 as a potent and selective PI3Kβ/δ inhibitor: PI3Kβ cell IC50 0.012 μM (in PTEN null MDA-MB-468 cell) and PI3Kδ cell IC50 0.047 μM (in Jeko-1 B-cell), with good pharmacokinetics and physical properties. In vivo, 16 showed profound pharmacodynamic modulation of AKT phosphorylation in a mouse PTEN-deficient PC3 prostate tumour xenograft after a single oral dose and gave excellent tumour growth inhibition in the same model after chronic oral dosing. Compound 16 was selected as a preclinical candidate for the treatment of PTEN-deficient tumours.


Journal of Medicinal Chemistry | 2018

The Identification of Potent, Selective, and Orally Available Inhibitors of Ataxia Telangiectasia Mutated (ATM) Kinase: The Discovery of AZD0156 (8-{6-[3-(Dimethylamino)propoxy]pyridin-3-yl}-3-methyl-1-(tetrahydro-2H-pyran-4-yl)-1,3-dihydro-2H-imidazo[4,5-c]quinolin-2-one)

Kurt Gordon Pike; Bernard Barlaam; Elaine Cadogan; Andrew Campbell; Yingxue Chen; Nicola Colclough; Nichola L. Davies; Camila de-Almeida; Sébastien L. Degorce; Myriam Didelot; Allan Dishington; Richard Ducray; Stephen T. Durant; Lorraine Hassall; Jane L. Holmes; Gareth Hughes; Philip A. MacFaul; Keith Raymond Mulholland; Thomas M. McGuire; Gilles Ouvry; Martin Pass; Graeme R. Robb; Natalie Stratton; Zhenhua Wang; Joanne Wilson; Baochang Zhai; Kang Zhao; Nidal Al-Huniti

ATM inhibitors, such as 7, have demonstrated the antitumor potential of ATM inhibition when combined with DNA double-strand break-inducing agents in mouse xenograft models. However, the properties of 7 result in a relatively high predicted clinically efficacious dose. In an attempt to minimize attrition during clinical development, we sought to identify ATM inhibitors with a low predicted clinical dose (<50 mg) and focused on strategies to increase both ATM potency and predicted human pharmacokinetic half-life (predominantly through the increase of volume of distribution). These efforts resulted in the discovery of 64 (AZD0156), an exceptionally potent and selective inhibitor of ATM based on an imidazo[4,5- c]quinolin-2-one core. 64 has good preclinical phamacokinetics, a low predicted clinical dose, and a high maximum absorbable dose. 64 has been shown to potentiate the efficacy of the approved drugs irinotecan and olaparib in disease relevant mouse models and is currently undergoing clinical evaluation with these agents.


Journal of Medicinal Chemistry | 2017

Discovery and Optimization of Pyrrolopyrimidine Inhibitors of Interleukin-1 Receptor Associated Kinase 4 (IRAK4) for the Treatment of Mutant MYD88L265P Diffuse Large B-Cell Lymphoma

James S. Scott; Sébastien L. Degorce; Rana Anjum; Janet D. Culshaw; Robert D. M. Davies; Nichola L. Davies; Keith Dillman; James E. Dowling; Lisa Drew; Andrew D. Ferguson; Sam D. Groombridge; Christopher Thomas Halsall; Julian A. Hudson; Scott Lamont; Nicola Lindsay; Stacey K. Marden; Michele Mayo; J. Elizabeth Pease; David Perkins; Jennifer H. Pink; Graeme R. Robb; Alan Rosen; Minhui Shen; Claire McWhirter; Dedong Wu

Herein we report the optimization of a series of pyrrolopyrimidine inhibitors of interleukin-1 receptor associated kinase 4 (IRAK4) using X-ray crystal structures and structure based design to identify and optimize our scaffold. Compound 28 demonstrated a favorable physicochemical and kinase selectivity profile and was identified as a promising in vivo tool with which to explore the role of IRAK4 inhibition in the treatment of mutant MYD88L265P diffuse large B-cell lymphoma (DLBCL). Compound 28 was shown to be capable of demonstrating inhibition of NF-κB activation and growth of the ABC subtype of DLBCL cell lines in vitro at high concentrations but showed greater effects in combination with a BTK inhibitor at lower concentrations. In vivo, the combination of compound 28 and ibrutinib led to tumor regression in an ABC-DLBCL mouse model.


Journal of Medicinal Chemistry | 2016

Discovery of a Potent, Selective, Orally Bioavailable, and Efficacious Novel 2-(Pyrazol-4-ylamino)-pyrimidine Inhibitor of the Insulin-like Growth Factor-1 Receptor (IGF-1R)

Sébastien L. Degorce; Scott Boyd; Jon Owen Curwen; Richard Ducray; Christopher Thomas Halsall; Clifford David Jones; Franck Lach; Eva M. Lenz; Martin Pass; Sarah L. Pass; Catherine B. Trigwell

Optimization of cellular lipophilic ligand efficiency (LLE) in a series of 2-anilino-pyrimidine IGF-1R kinase inhibitors led to the identification of novel 2-(pyrazol-4-ylamino)-pyrimidines with improved physicochemical properties. Replacement of the imidazo[1,2-a]pyridine group of the previously reported inhibitor 3 with the related pyrazolo[1,5-a]pyridine improved IGF-1R cellular potency. Substitution of the amino-pyrazole group was key to obtaining excellent kinase selectivity and pharmacokinetic parameters suitable for oral dosing, which led to the discovery of (2R)-1-[4-(4-{[5-chloro-4-(pyrazolo[1,5-a]pyridin-3-yl)-2-pyrimidinyl]amino}-3,5-dimethyl-1H-pyrazol-1-yl)-1-piperidinyl]-2-hydroxy-1-propanone (AZD9362, 28), a novel, efficacious inhibitor of IGF-1R.

Collaboration


Dive into the Sébastien L. Degorce's collaboration.

Researchain Logo
Decentralizing Knowledge