Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sébastien Lavoué is active.

Publication


Featured researches published by Sébastien Lavoué.


Evolution | 2004

AFLPs RESOLVE PHYLOGENY AND REVEAL MITOCHONDRIAL INTROGRESSION WITHIN A SPECIES FLOCK OF AFRICAN ELECTRIC FISH (MORMYROIDEA: TELEOSTEI)

Jack Sullivan; Sébastien Lavoué; Matthew E. Arnegard; Carl D. Hopkins

Abstract Estimating species phylogeny from a single gene tree can be especially problematic for studies of species flocks in which diversification has been rapid. Here we compare a phylogenetic hypothesis derived from cytochrome b (cyt b) sequences with another based on amplified fragment length polymorphisms (AFLP) for 60 specimens of a monophyletic riverine species flock of mormyrid electric fishes collected in Gabon, west-central Africa. We analyze the aligned cyt b sequences by Wagner parsimony and AFLP data generated from 10 primer combinations using neighbor-joining from a Nei-Li distance matrix, Wagner parsimony, and Dollo parsimony. The different analysis methods yield AFLP tree topologies with few conflicting nodes. Recovered basal relationships in the group are similar between cyt b and AFLP analyses, but differ substantially at many of the more derived nodes. More of the clades recovered with the AFLP characters are consistent with the morphological characters used to designate operational taxonomic units in this group. These results support our hypothesis that the mitochondrial gene tree differs from the overall species phylogeny due at least in part to mitochondrial introgession among lineages. Mapping the two forms of electric organ found in this group onto the AFLP tree suggests that posteriorly innervated electrocytes with nonpenetrating stalks have independently evolved from anteriorly innervated, penetrating-stalk electrocytes at least three times.


The American Naturalist | 2010

Sexual signal evolution outpaces ecological divergence during electric fish species radiation.

Matthew E. Arnegard; Peter B. McIntyre; Luke J. Harmon; Miriam L. Zelditch; William G. R. Crampton; Justin K. Davis; Jack Sullivan; Sébastien Lavoué; Carl D. Hopkins

Natural selection arising from resource competition and environmental heterogeneity can drive adaptive radiation. Ecological opportunity facilitates this process, resulting in rapid divergence of ecological traits in many celebrated radiations. In other cases, sexual selection is thought to fuel divergence in mating signals ahead of ecological divergence. Comparing divergence rates between naturally and sexually selected traits can offer insights into processes underlying species radiations, but to date such comparisons have been largely qualitative. Here, we quantitatively compare divergence rates for four traits in African mormyrid fishes, which use an electrical communication system with few extrinsic constraints on divergence. We demonstrate rapid signal evolution in the Paramormyrops species flock compared to divergence in morphology, size, and trophic ecology. This disparity in the tempo of trait evolution suggests that sexual selection is an important early driver of species radiation in these mormyrids. We also found slight divergence in ecological traits among closely related species, consistent with a supporting role for natural selection in Paramormyrops diversification. Our results highlight the potential for sexual selection to drive explosive signal divergence when innovations in communication open new opportunities in signal space, suggesting that opportunity can catalyze species radiations through sexual selection, as well as natural selection.


Evolution | 2002

DISCOVERY AND PHYLOGENETIC ANALYSIS OF A RIVERINE SPECIES FLOCK OF AFRICAN ELECTRIC FISHES (MORMYRIDAE: TELEOSTEI)

Jack Sullivan; Sébastien Lavoué; Carl D. Hopkins

Abstract The evolution of species‐specific mate recognition signals is of particular interest within speciose mono‐phyletic groups with restricted distributions (known as “species flocks”). However, the explosive nature of speciation in these clades makes difficult the reconstruction of their phylogenetic history. Here we describe a species flock of riverine mormyrid fishes from west‐central Africa in which electric signals may play a role in the reproductive isolation of sympatric species. In our recent field collections, totaling more than 1400 specimens from many localities, we recognize 38 forms that are distinct in their morphologies and electric organ discharge (EOD) characteristics. Of these 38, only four clearly correspond to described species. Here we treat these forms as operational taxonomic units (OTUs) in a phylogenetic analysis of cytochrome b sequence data from a sample of 86 specimens. We examined support in the molecular data for the monophyly of these 38 OTUs considered together, the monophyly of each phenotypically delimited OTU considered individually, and for relationships among OTUs congruent with those inferred from the distribution of morphological and EOD character states. Trees obtained by both maximum‐parsimony and maximum‐likelihood analyses, rooted with sequence data from outgroup taxa, provide evidence for the monophyly of these 38 OTUs with respect to other mormyrid fishes. The small genetic distances between many distinct forms suggest their recent divergence. However, in many instances the cytochrome b tree topology fails to support the monophyly of individual OTUs and close relationships between OTUs that are similar in morphology and EOD characteristics. In other cases, individuals from distinct OTUs share identical or nearly identical haplotypes. Close examination of these cases suggests that unnatural OTU definition is not the sole cause of this pattern, and we infer an incongruence between the mitochondrial gene tree and the organismal phylogeny caused by incomplete mitochondrial lineage sorting and/or introgression across forms. The apparently rapid diversification in this clade of riverine electric fishes and the problems associated with recovering a meaningful species‐level phylogeny from mitochondrial data parallel findings in other species flocks. Selection on EOD waveforms as mate recognition signals may be involved in the radiation of these fishes. This is the first description of a freshwater fish species flock from a riverine, as opposed to a lacustrine, environment.


Evolution | 2013

Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei)

Wei-Jen Chen; Sébastien Lavoué; Richard L. Mayden

The biogeography of the mega‐diverse, freshwater, and globally distributed Otophysi has received considerable attention. This attraction largely stems from assumptions as to their ancient origin, the clade being almost exclusively freshwater, and their suitability as to explanations of trans‐oceanic distributions. Despite multiple hypotheses explaining present‐day distributions, problems remain, precluding more parsimonious explanations. Underlying previous hypotheses are alternative phylogenies for Otophysi, uncertainties as to temporal diversification and assumptions integral to various explanations. We reexamine the origin and early diversification of this clade based on a comprehensive time‐calibrated, molecular‐based phylogenetic analysis and event‐based approaches for ancestral range inference of lineages. Our results do not corroborate current phylogenetic classifications of otophysans. We demonstrate Siluriformes are never sister to Gymnotiformes and Characiformes are most likely nonmonophyletic. Divergence time estimates specify a split between Cypriniformes and Characiphysi with the fragmentation of Pangea. The early diversification of characiphysans either predated, or was contemporary with, the separation of Africa and South America, and involved a combination of within‐ and between‐continental divergence events for these lineages. The intercontinental diversification of siluroids and characoids postdated major intercontinental tectonic fragmentations (<90 Mya). Post‐tectonic drift dispersal events are hypothesized to account for their current distribution patterns.


PLOS ONE | 2012

Comparable Ages for the Independent Origins of Electrogenesis in African and South American Weakly Electric Fishes

Sébastien Lavoué; Masaki Miya; Matthew E. Arnegard; Jack Sullivan; Carl D. Hopkins; Mutsumi Nishida

One of the most remarkable examples of convergent evolution among vertebrates is illustrated by the independent origins of an active electric sense in South American and African weakly electric fishes, the Gymnotiformes and Mormyroidea, respectively. These groups independently evolved similar complex systems for object localization and communication via the generation and reception of weak electric fields. While good estimates of divergence times are critical to understanding the temporal context for the evolution and diversification of these two groups, their respective ages have been difficult to estimate due to the absence of an informative fossil record, use of strict molecular clock models in previous studies, and/or incomplete taxonomic sampling. Here, we examine the timing of the origins of the Gymnotiformes and the Mormyroidea using complete mitogenome sequences and a parametric Bayesian method for divergence time reconstruction. Under two different fossil-based calibration methods, we estimated similar ages for the independent origins of the Mormyroidea and Gymnotiformes. Our absolute estimates for the origins of these groups either slightly postdate, or just predate, the final separation of Africa and South America by continental drift. The most recent common ancestor of the Mormyroidea and Gymnotiformes was found to be a non-electrogenic basal teleost living more than 85 millions years earlier. For both electric fish lineages, we also estimated similar intervals (16–19 or 22–26 million years, depending on calibration method) between the appearance of electroreception and the origin of myogenic electric organs, providing rough upper estimates for the time periods during which these complex electric organs evolved de novo from skeletal muscle precursors. The fact that the Gymnotiformes and Mormyroidea are of similar age enhances the comparative value of the weakly electric fish system for investigating pathways to evolutionary novelty, as well as the influences of key innovations in communication on the process of species radiation.


Proceedings of the Royal Society of London B: Biological Sciences | 2011

Remarkable morphological stasis in an extant vertebrate despite tens of millions of years of divergence

Sébastien Lavoué; Masaki Miya; Matthew E. Arnegard; Peter B. McIntyre; Victor Mamonekene; Mutsumi Nishida

The relationship between genotypic and phenotypic divergence over evolutionary time varies widely, and cases of rapid phenotypic differentiation despite genetic similarity have attracted much attention. Here, we report an extreme case of the reverse pattern—morphological stasis in a tropical fish despite massive genetic divergence. We studied the enigmatic African freshwater butterfly fish (Pantodon buchholzi), whose distinctive morphology earns it recognition as a monotypic family. We sequenced the mitochondrial genome of Pantodon from the Congo basin and nine other osteoglossomorph taxa for comparison with previous mitogenomic profiles of Pantodon from the Niger basin and other related taxa. Pantodon populations form a monophyletic group, yet their mitochondrial coding sequences differ by 15.2 per cent between the Niger and Congo basins. The mitogenomic divergence time between these populations is estimated to be greater than 50 Myr, and deep genetic divergence was confirmed by nuclear sequence data. Among six sister-group comparisons of osteoglossomorphs, Pantodon exhibits the slowest rate of morphological divergence despite a level of genetic differentiation comparable to both species-rich (e.g. Mormyridae) and species-poor (e.g. Osteoglossidae) families. Morphological stasis in these two allopatric lineages of Pantodon offers a living vertebrate model for investigating phenotypic stability over millions of generations in the face of profound fluctuations in environmental conditions.


Frontiers in Marine Science | 2014

New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha)

Wei-Jen Chen; Francesco Santini; Giorgio Carnevale; Jhen-Nien Chen; Shu-Hui Liu; Sébastien Lavoué; Richard L. Mayden

The Acanthomorpha is the largest group of teleost fishes with about one third of extant vertebrate species. In the course of its evolution this lineage experienced several episodes of radiation, leading to a large number of descendant lineages differing profoundly in morphology, ecology, distribution and behavior. Although Acanthomorpha was recognized decades ago, we are only now beginning to decipher its large-scale, time-calibrated phylogeny, a prerequisite to test various evolutionary hypotheses explaining the tremendous diversity of this group. In this study, we provide new insights into the early evolution of the acanthomorphs and the euteleost allies based on the phylogenetic analysis of a newly developed dataset combining nine nuclear and mitochondrial gene markers. Our inferred tree is time-calibrated using 15 fossils, some of which have not been used before. While our phylogeny strongly supports a monophyletic Neoteleostei, Ctenosquamata (i.e., Acanthomorpha plus Myctophiformes), and Acanthopterygii, we find weak support (bootstrap value < 48%) for the traditionally defined Acanthomorpha, as well as evidence of non-monophyly for the traditional Paracanthopterygii, Beryciformes, and Percomorpha. We corroborate the new Paracanthopterygii sensu Miya et al. (2005) including Polymixiiformes, Zeiformes, Gadiformes, Percopsiformes, and likely the enigmatic Stylephorus chordatus. Our timetree largely agrees with other recent studies based on nuclear loci in inferring an Early Cretaceous origin for the acanthomorphs followed by a Late Cretaceous/Early Paleogene radiation of major lineages. This is in contrast to mitogenomic studies mostly inferring Jurassic or even Triassic ages for the origin of the acanthomorphs. We compare our results to those of previous studies, and attempt to address some of the issues that may have led to incongruence between the fossil record and the molecular clock studies, as well as between the different molecular timetrees.


Systematic Biology | 2013

Paleo-Drainage Basin Connectivity Predicts Evolutionary Relationships across Three Southeast Asian Biodiversity Hotspots

Mark de Bruyn; Lukas Rüber; Stephan Nylinder; Björn Stelbrink; Nathan R. Lovejoy; Sébastien Lavoué; Heok Hui Tan; Estu Nugroho; Daisy Wowor; Peter K. L. Ng; M.N. Siti Azizah; Thomas von Rintelen; Robert Hall; Gary R. Carvalho

Understanding factors driving diversity across biodiversity hotspots is critical for formulating conservation priorities in the face of ongoing and escalating environmental deterioration. While biodiversity hotspots encompass a small fraction of Earths land surface, more than half the worlds plants and two-thirds of terrestrial vertebrate species are endemic to these hotspots. Tropical Southeast (SE) Asia displays extraordinary species richness, encompassing four biodiversity hotspots, though disentangling multiple potential drivers of species richness is confounded by the regions dynamic geological and climatic history. Here, we use multilocus molecular genetic data from dense multispecies sampling of freshwater fishes across three biodiversity hotspots, to test the effect of Quaternary climate change and resulting drainage rearrangements on aquatic faunal diversification. While Cenozoic geological processes have clearly shaped evolutionary history in SE Asian halfbeak fishes, we show that paleo-drainage re-arrangements resulting from Quaternary climate change played a significant role in the spatiotemporal evolution of lowland aquatic taxa, and provide priorities for conservation efforts.


Comptes Rendus Biologies | 2002

Assessment of otocephalan and protacanthopterygian concepts in the light of multiple molecular phylogenies

René Zaragüeta-Bagils; Sébastien Lavoué; Annie Tillier; Céline Bonillo; Guillaume Lecointre

The rise of cladistics in ichthyology has dramatically improved our knowledge of teleostean basal interrelationships. However, some questions have remained open, among them the reliability of the Otocephala, a clade grouping clupeomorphs and ostariophysans, and the relationships of the Esocoidei. These two questions have been investigated in the light of new DNA sequences (from 28S and rhodopsin genes) and sequences from data banks (cytochrome b, 12-16S, 18S, MLL and RAG1). The ability of each of these markers to resolve basal teleostean interrelationships is assessed, and the cytochrome b was not found appropriate. Practical (i.e. different taxonomic samplings) and epistemological grounds led us to perform multiple separated phylogenetic analyses, in order to estimate the reliability of the above clades from their repeatability among trees from independent sequence data. The Otocephala are found monophyletic from most of the datasets; otherwise, they are not significantly contradicted from the others, which exhibit unresolved relationships. We conclude that the evidence provided here favours the sister-group relationship of clupeomorphs and ostariophysans. Morphological evidence including fossils is discussed, concluding that morphological works have not yet provided sufficient data to support this group. Salmonids and esocoids are found sister-groups from every molecular dataset in which these groups were sampled. Based on these convincing results, the Protacanthopterygii of Johnson and Patterson [1] are redefined, including the Esocoidei.


PLOS ONE | 2013

Mitogenomic Evidence for an Indo-West Pacific Origin of the Clupeoidei (Teleostei: Clupeiformes)

Sébastien Lavoué; Masaki Miya; Prachya Musikasinthorn; Wei-Jen Chen; Mutsumi Nishida

The clupeoid fishes are distributed worldwide, with marine, freshwater and euryhaline species living in either tropical or temperate environments. Regional endemism is important at the species and genus levels, and the highest species diversity is found in the tropical marine Indo-West Pacific region. The clupeoid distribution follows two general pattern of species richness, the longitudinal and latitudinal gradients. To test historical hypotheses explaining the formation of these two gradients, we have examined the early biogeography of the Clupeoidei in reconstructing the evolution of their habitat preferences along with their ancestral range distributions on a time-calibrated mitogenomic phylogeny. The phylogenetic results support the distinction of nine main lineages within the Clupeoidei, five of them new. We infer several independent transitions from a marine to freshwater environment and from a tropical to temperate environment that occurred after the initial diversification period of the Clupeoidei. These results combined with our ancestral range reconstruction hypothesis suggest that the probable region of origin and diversification of the Clupeoidei during the Cretaceous period was the tropical marine precursor to the present Indo-West Pacific region. Thus, our study favors the hypotheses of “Region of origin” and “Tropical conservatism” to explain the origins of the longitudinal and latitudinal gradients of clupeoid species richness, respectively. Additional geological and paleontological evidence further define the tropical marine paleo-region of origin as the eastern Tethys Sea region. The Cretaceous fossil record of the Clupeoidei is partially incongruent with the results here as it contains taxa found outside this region. We discuss three possible causes of conflict between our biogeographical hypothesis and the distributions of the Cretaceous clupeoid fossils: regional extinction, incomplete taxonomic sampling and incorrect timescale estimation.

Collaboration


Dive into the Sébastien Lavoué's collaboration.

Top Co-Authors

Avatar

Masaki Miya

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei-Jen Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Matthew E. Arnegard

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Tariq Ezaz

University of Canberra

View shared research outputs
Top Co-Authors

Avatar

Petr Ráb

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcelo de Bello Cioffi

Federal University of São Carlos

View shared research outputs
Researchain Logo
Decentralizing Knowledge