Sébastien Lyonnais
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sébastien Lyonnais.
PLOS ONE | 2007
Gilles Mirambeau; Sébastien Lyonnais; Dominique Coulaud; Laurence Hameau; Sophie Lafosse; Josette Jeusset; Isabelle Borde; M. Reboud-Ravaux; Tobias Restle; Robert J. Gorelick; Eric Le Cam
The HIV-1 nucleocapsid is formed during protease (PR)-directed viral maturation, and is transformed into pre-integration complexes following reverse transcription in the cytoplasm of the infected cell. Here, we report a detailed transmission electron microscopy analysis of the impact of HIV-1 PR and reverse transcriptase (RT) on nucleocapsid plasticity, using in vitro reconstitutions. After binding to nucleic acids, NCp15, a proteolytic intermediate of nucleocapsid protein (NC), was processed at its C-terminus by PR, yielding premature NC (NCp9) followed by mature NC (NCp7), through the consecutive removal of p6 and p1. This allowed NC co-aggregation with its single-stranded nucleic-acid substrate. Examination of these co-aggregates for the ability of RT to catalyse reverse transcription showed an effective synthesis of double-stranded DNA that, remarkably, escaped from the aggregates more efficiently with NCp7 than with NCp9. These data offer a compelling explanation for results from previous virological studies that focused on i) Gag processing leading to nucleocapsid condensation, and ii) the disappearance of NCp7 from the HIV-1 pre-integration complexes. We propose that HIV-1 PR and RT, by controlling the nucleocapsid architecture during the steps of condensation and dismantling, engage in a successive nucleoprotein-remodelling process that spatiotemporally coordinates the pre-integration steps of HIV-1. Finally we suggest that nucleoprotein remodelling mechanisms are common features developed by mobile genetic elements to ensure successful replication.
Current Topics in Microbiology and Immunology | 2015
Mattia Mori; Lesia Kovalenko; Sébastien Lyonnais; Danny Antaki; Bruce E. Torbett; Maurizio Botta; Gilles Mirambeau; Yves Mély
The currently available anti-HIV-1 therapeutics is highly beneficial to infected patients. However, clinical failures occur as a result of the ability of HIV-1 to rapidly mutate. One approach to overcome drug resistance is to target HIV-1 proteins that are highly conserved among phylogenetically distant viral strains and currently not targeted by available therapies. In this respect, the nucleocapsid (NC) protein, a zinc finger protein, is particularly attractive, as it is highly conserved and plays a central role in virus replication, mainly by interacting with nucleic acids. The compelling rationale for considering NC as a viable drug target is illustrated by the fact that point mutants of this protein lead to noninfectious viruses and by the inability to select viruses resistant to a first generation of anti-NC drugs. In our review, we discuss the most relevant properties and functions of NC, as well as recent developments of small molecules targeting NC. Zinc ejectors show strong antiviral activity, but are endowed with a low therapeutic index due to their lack of specificity, which has resulted in toxicity. Currently, they are mainly being investigated for use as topical microbicides. Greater specificity may be achieved by using non-covalent NC inhibitors (NCIs) targeting the hydrophobic platform at the top of the zinc fingers or key nucleic acid partners of NC. Within the last few years, innovative methodologies have been developed to identify NCIs. Though the antiviral activity of the identified NCIs needs still to be improved, these compounds strongly support the druggability of NC and pave the way for future structure-based design and optimization of efficient NCIs.
Virus Research | 2013
Sébastien Lyonnais; Robert J. Gorelick; Fatima Heniche-Boukhalfa; Serge Bouaziz; Vincent Parissi; Jean-François Mouscadet; Tobias Restle; Jose Maria Gatell; Eric Le Cam; Gilles Mirambeau
HIV-1 reverse transcription is achieved in the newly infected cell before viral DNA (vDNA) nuclear import. Reverse transcriptase (RT) has previously been shown to function as a molecular motor, dismantling the nucleocapsid complex that binds the viral genome as soon as plus-strand DNA synthesis initiates. We first propose a detailed model of this dismantling in close relationship with the sequential conversion from RNA to double-stranded (ds) DNA, focusing on the nucleocapsid protein (NCp7). The HIV-1 DNA-containing pre-integration complex (PIC) resulting from completion of reverse transcription is translocated through the nuclear pore. The PIC nucleoprotein architecture is poorly understood but contains at least two HIV-1 proteins initially from the virion core, namely integrase (IN) and the viral protein r (Vpr). We next present a set of electron micrographs supporting that Vpr behaves as a DNA architectural protein, initiating multiple DNA bridges over more than 500 base pairs (bp). These complexes are shown to interact with NCp7 bound to single-stranded nucleic acid regions that are thought to maintain IN binding during dsDNA synthesis, concurrently with nucleocapsid complex dismantling. This unexpected binding of Vpr conveniently leads to a compacted but filamentous folding of the vDNA that should favor its nuclear import. Finally, nucleocapsid-like aggregates engaged in dsDNA synthesis appear to efficiently bind to F-actin filaments, a property that may be involved in targeting complexes to the nuclear envelope. More generally, this article highlights unique possibilities offered by in vitro reconstitution approaches combined with macromolecular imaging to gain insights into the mechanisms that alter the nucleoprotein architecture of the HIV-1 genome, ultimately enabling its insertion into the nuclear chromatin.
Biochimica et Biophysica Acta | 2014
Sanae Benabou; Rubén Ferreira; Anna Aviñó; Carlos González; Sébastien Lyonnais; Maria Solà; Ramon Eritja; Joaquim Jaumot; Raimundo Gargallo
BACKGROUND Cytosine- and guanine-rich regions of DNA are capable of forming complex structures named i-motifs and G-quadruplexes, respectively. In the present study the solution equilibria at nearly physiological conditions of a 34-base long cytosine-rich sequence and its complementary guanine-rich strand corresponding to the first intron of the n-myc gene were studied. Both sequences, not yet studied, contain a 12-base tract capable of forming stable hairpins inside the i-motif and G-quadruplex structures, respectively. METHODS Spectroscopic, mass spectrometry and separation techniques, as well as multivariate data analysis methods, were used to unravel the species and conformations present. RESULTS The cytosine-rich sequence forms two i-motifs that differ in the protonation of bases located in the loops. A stable Watson-Crick hairpin is formed by the bases in the first loop, stabilizing the i-motif structure. The guanine-rich sequence adopts a parallel G-quadruplex structure that is stable throughout the pH range 3-7, despite the protonation of cytosine and adenine bases at lower pH values. The presence of G-quadruplex aggregates was confirmed using separation techniques. When mixed, G-quadruplex and i-motif coexist with the Watson-Crick duplex across a pH range from approximately 3.0 to 6.5. CONCLUSIONS Two cytosine- and guanine-rich sequences in n-myc gene may form stable i-motif and G-quadruplex structures even in the presence of long loops. pH modulates the equilibria involving the intramolecular structures and the intermolecular Watson-Crick duplex. GENERAL SIGNIFICANCE Watson-Crick hairpins located in the intramolecular G-quadruplexes and i-motifs in the promoter regions of oncogenes could play a role in stabilizing these structures.
Nucleic acids symposium series (2004) | 2008
Anne De Cian; Julien Gros; Aurore Guédin; Meriem Haddi; Sébastien Lyonnais; Lionel Guittat; Jean-François Riou; Chantal Trentesaux; Barbara Saccà; Laurent Lacroix; Patrizia Alberti; Jean-Louis Mergny
Guanine-rich nucleic acids can adopt unusual structures called guanine quadruplexes (G4) based on stacked guanine quartets. Both RNA and DNA backbones are compatible with G4 formation. As RNA and DNA quadruplexes may be recognized by ligands, it is important to understand the rules that govern the stability and specificity of these complexes. We explore the binding of a pyridine dicarboxamide derivative to various oligoribo- and oligodeoxyribo-nucleotides.
Scientific Reports | 2017
Sébastien Lyonnais; Aleix Tarrés-Solé; Anna Rubio-Cosials; Anna Cuppari; Reicy Brito; Joaquim Jaumot; Raimundo Gargallo; Marta Vilaseca; Cristina Silva; Anton Granzhan; Marie-Paule Teulade-Fichou; Ramon Eritja; Maria Solà
The ability of the guanine-rich strand of the human mitochondrial DNA (mtDNA) to form G-quadruplex structures (G4s) has been recently highlighted, suggesting potential functions in mtDNA replication initiation and mtDNA stability. G4 structures in mtDNA raise the question of their recognition by factors associated with the mitochondrial nucleoid. The mitochondrial transcription factor A (TFAM), a high-mobility group (HMG)-box protein, is the major binding protein of human mtDNA and plays a critical role in its expression and maintenance. HMG-box proteins are pleiotropic sensors of DNA structural alterations. Thus, we investigated and uncovered a surprising ability of TFAM to bind to DNA or RNA G4 with great versatility, showing an affinity similar than to double-stranded DNA. The recognition of G4s by endogenous TFAM was detected in mitochondrial extracts by pull-down experiments using a G4-DNA from the mtDNA conserved sequence block II (CSBII). Biochemical characterization shows that TFAM binding to G4 depends on both the G-quartets core and flanking single-stranded overhangs. Additionally, it shows a structure-specific binding mode that differs from B-DNA, including G4-dependent TFAM multimerization. These TFAM-G4 interactions suggest functional recognition of G4s in the mitochondria.
Nucleic Acids Research | 2017
Arka Chakraborty; Sébastien Lyonnais; Federica Battistini; Giorgio Medici; Rafel Prohens; Modesto Orozco; Josep Vilardell; Maria Solà
The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-box protein, packages and maintains it. The protein binds DNA in a non-sequence-specific manner, but displays a distinct ‘phased-binding’ at specific DNA sequences containing poly-adenine tracts (A-tracts). We present here two crystal structures of Abf2p in complex with mtDNA-derived fragments bearing A-tracts. Each HMG-box of Abf2p induces a 90° bend in the contacted DNA, causing an overall U-turn. Together with previous data, this suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins. Combining this structural information with mutational, biophysical and computational analyses, we reveal a unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance. Additionally, we provide the molecular basis for A-tract mediated exclusion of Abf2p binding. Due to high prevalence of A-tracts in yeast mtDNA, this has critical relevance for nucleoid architecture. Therefore, an unprecedented A-tract mediated protein positioning mechanism regulates DNA packaging proteins in the mitochondria, and in combination with DNA-bending and U-turn formation, governs mtDNA compaction.
Antimicrobial Agents and Chemotherapy | 2017
George Koutsoudakis; Alexia Paris de León; Carolina Herrera; Marcus Dorner; Gemma Pérez-Vilaró; Sébastien Lyonnais; Santiago Grijalvo; Ramon Eritja; Andreas Meyerhans; Gilles Mirambeau; Juana Díez
ABSTRACT A hepatitis C virus (HCV) epidemic affecting HIV-infected men who have sex with men (MSM) is expanding worldwide. In spite of the improved cure rates obtained with the new direct-acting antiviral drug (DAA) combinations, the high rate of reinfection within this population calls urgently for novel preventive interventions. In this study, we determined in cell culture and ex vivo experiments with human colorectal tissue that lipoquads, G-quadruplex DNA structures fused to cholesterol, are efficient HCV pangenotypic entry and cell-to-cell transmission inhibitors. Thus, lipoquads may be promising candidates for the development of rectally applied gels to prevent HCV transmission.
Scientific Reports | 2017
Sébastien Lyonnais; Aleix Tarrés-Solé; Anna Rubio-Cosials; Anna Cuppari; Reicy Brito; Joaquim Jaumot; Raimundo Gargallo; Marta Vilaseca; Cristina Silva; Anton Granzhan; Marie-Paule Teulade-Fichou; Ramon Eritja; Maria Solà
Scientific Reports 7: Article number: 43992; published online: 09 March 2017; updated: 06 April 2017 The original version of this Article contained an error in the spelling of the author Aleix Tarres-Sole, which was incorrectly given as Aleix Tarres-Soler. This error has now been corrected in the PDF and HTML versions of the Article.
Retrovirology | 2013
Sébastien Lyonnais; Laure Dufau; M. Reboud-Ravaux; Roland Marquet; Jean-Christophe Paillart; Jose Maria Gatell; Rob Gorelick; Carine Tisné; Gilles Mirambeau
During HIV-1 maturation, the step driven by its protease (PR) controling RNA condensation remains poorly documented. Our methodology, mainly inspired by B. M. Alberts’ concept of macromolecular machines, combines biochemical and biophysical approaches with purified components. They provide a clear in vitro demonstration that HIV-1 RNA behaves within the HIV-1 particle as an up-regulator of PR. The resulting fast processing of RNA-bound nucleocapsid protein (NC) both in N- and C-termini from its Gag precursor clearly leads to RNA condensation. The critical step consists of the secondary cleavage releasing the Gag C-terminal p6 domain from the NCp15 intermediate. Remarkably, such processing is optimal in more physiological conditions than classically used for in vitro HIV-1 PR assay, thus allowing a useful protection of the crucial NC zinc fingers. The related mechanism implies PR sequestration by clusters of NCp15 assembled along the RNA chains, highlighting a fast condensation of RNA:NC ribonucleoproteic complexes as an opportune step within the overall process of maturation, prior to the conical capsid reassembly. These data support a new biological paradigm of a protease dramatically controlled by a RNA molecule to optimize its action changing the targeted nucleoprotein architecture from an assembly mode to a functional one.