Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastien Monette is active.

Publication


Featured researches published by Sebastien Monette.


Journal of Experimental Medicine | 2013

Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo

Omar Abdel-Wahab; Jie Gao; Mazhar Adli; Anwesha Dey; Thomas Trimarchi; Young Rock Chung; Cem Kuscu; Todd Hricik; Delphine Ndiaye-Lobry; Lindsay M. LaFave; Richard Koche; Alan H. Shih; Olga A. Guryanova; Eunhee Kim; Sheng Li; Suveg Pandey; Joseph Yusup Shin; Leon Telis; Jinfeng Liu; Parva K. Bhatt; Sebastien Monette; Xinyang Zhao; Christopher E. Mason; Christopher Y. Park; Bradley E. Bernstein; Iannis Aifantis; Ross L. Levine

Loss of Asxl1 results in myelodysplastic syndrome, whereas concomitant deletion of Tet2 restores HSC self-renewal and triggers a more severe disease phenotype distinct from that seen in single-gene knockout mice.


Science Translational Medicine | 2015

Surface-Enhanced Resonance Raman Scattering Nanostars for High Precision Cancer Imaging

Stefan Harmsen; Ruimin Huang; Matthew A. Wall; Hazem Karabeber; Jason M. Samii; Massimiliano Spaliviero; White; Sebastien Monette; O'Connor R; Kenneth L. Pitter; Sastra Sa; Saborowski M; Eric C. Holland; Singer S; Olive Kp; Scott W. Lowe; Ronald G. Blasberg; Moritz F. Kircher

Surface-enhanced resonance Raman scattering gold nanostars allow detection of macro- and microscopic foci of premalignant and cancerous lesions in vivo. Seeing Nanostars Microscopic tumors may be difficult for the naked eye to see, but they are no match for nanosized imaging agents, which home in on cancerous tissues to signal the presence of disease. Harmsen and colleagues created a new generation of cancer imaging agents, called “surface-enhanced resonance Raman scattering (SERRS) nanostars” −75-nm star-shaped gold cores wrapped in Raman reporter molecule-containing silica. When hit by a near-infrared laser, these nanostars emit a unique photonic signature (Raman “fingerprint”). The authors used a new silica encapsulation method and a reporter molecule that was “in resonance” with the laser, which meant that they shone nearly 400 times brighter than their “nonresonant” counterparts during Raman imaging. The SERRS nanostars were used to image macro- and microscopic malignant lesions in animal models of pancreatic cancer, breast cancer, prostate cancer, and sarcoma with high precision. As endoscopic and handheld Raman imaging devices are further developed for the clinic, the SERRS nanostars are sure to find a place in human tumor detection. The inability to visualize the true extent of cancers represents a significant challenge in many areas of oncology. The margins of most cancer types are not well demarcated because the cancer diffusely infiltrates the surrounding tissues. Furthermore, cancers may be multifocal and characterized by the presence of microscopic satellite lesions. Such microscopic foci represent a major reason for persistence of cancer, local recurrences, and metastatic spread, and are usually impossible to visualize with currently available imaging technologies. An imaging method to reveal the true extent of tumors is desired clinically and surgically. We show the precise visualization of tumor margins, microscopic tumor invasion, and multifocal locoregional tumor spread using a new generation of surface-enhanced resonance Raman scattering (SERRS) nanoparticles, which are termed SERRS nanostars. The SERRS nanostars feature a star-shaped gold core, a Raman reporter resonant in the near-infrared spectrum, and a primer-free silication method. In genetically engineered mouse models of pancreatic cancer, breast cancer, prostate cancer, and sarcoma, and in one human sarcoma xenograft model, SERRS nanostars enabled accurate detection of macroscopic malignant lesions, as well as microscopic disease, without the need for a targeting moiety. Moreover, the sensitivity (1.5 fM limit of detection) of SERRS nanostars allowed imaging of premalignant lesions of pancreatic and prostatic neoplasias. High sensitivity and broad applicability, in conjunction with their inert gold-silica composition, render SERRS nanostars a promising imaging agent for more precise cancer imaging and resection.


Journal of Clinical Investigation | 2013

iRHOM2 is a critical pathogenic mediator of inflammatory arthritis

Priya Darshinee A. Issuree; Thorsten Maretzky; David R. McIlwain; Sebastien Monette; Xiaoping Qing; Philipp A. Lang; Steven L. Swendeman; Kyung-Hyun Park-Min; Nikolaus B. Binder; George D. Kalliolias; Anna Yarilina; Keisuke Horiuchi; Lionel B. Ivashkiv; Tak W. Mak; Jane E. Salmon; Carl P. Blobel

iRHOM2, encoded by the gene Rhbdf2, regulates the maturation of the TNF-α convertase (TACE), which controls shedding of TNF-α and its biological activity in vivo. TACE is a potential target to treat TNF-α-dependent diseases, such as rheumatoid arthritis, but there are concerns about potential side effects, because TACE also protects the skin and intestinal barrier by activating EGFR signaling. Here we report that inactivation of Rhbdf2 allows tissue-specific regulation of TACE by selectively preventing its maturation in immune cells, without affecting its homeostatic functions in other tissues. The related iRHOM1, which is widely expressed, except in hematopoietic cells, supported TACE maturation and shedding of the EGFR ligand TGF-α in Rhbdf2-deficient cells. Remarkably, mice lacking Rhbdf2 were protected from K/BxN inflammatory arthritis to the same extent as mice lacking TACE in myeloid cells or Tnfa-deficient mice. In probing the underlying mechanism, we found that two main drivers of K/BxN arthritis, complement C5a and immune complexes, stimulated iRHOM2/TACE-dependent shedding of TNF-α in mouse and human cells. These data demonstrate that iRHOM2 and myeloid-expressed TACE play a critical role in inflammatory arthritis and indicate that iRHOM2 is a potential therapeutic target for selective inactivation of TACE in myeloid cells.


Nature Nanotechnology | 2016

Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth

Sung Eun Kim; Li Zhang; Kai Ma; Michelle Riegman; Feng Chen; Irina Ingold; Marcus Conrad; Melik Z. Turker; Minghui Gao; Xuejun Jiang; Sebastien Monette; Mohan Pauliah; Mithat Gonen; Pat Zanzonico; Thomas P. Quinn; Ulrich Wiesner; Michelle S. Bradbury; Michael Overholtzer

The design of cancer-targeting particles with precisely-tuned physiocochemical properties may enhance delivery of therapeutics and access to pharmacological targets. However, molecular level understanding of the interactions driving the fate of nanomedicine in biological systems remains elusive. Here, we show that ultrasmall (< 10 nm in diameter) poly(ethylene glycol) (PEG)-coated silica nanoparticles, functionalized with melanoma-targeting peptides, can induce a form of programmed cell death known as ferroptosis in starved cancer cells and cancer-bearing mice. Tumor xenografts in mice intravenously injected with nanoparticles using a high-dose multiple injection scheme exhibit reduced growth or regression, in a manner that is reversed by the pharmacological inhibitor of ferroptosis, liproxstatin-1. These data demonstrate that ferroptosis can be targeted by ultrasmall silica nanoparticles and may have therapeutic potential.


Human Gene Therapy Methods | 2012

Long-Term Expression and Safety of Administration of AAVrh.10hCLN2 to the Brain of Rats and Nonhuman Primates for the Treatment of Late Infantile Neuronal Ceroid Lipofuscinosis

Dolan Sondhi; Linda Johnson; Keith Purpura; Sebastien Monette; Mark M. Souweidane; Michael G. Kaplitt; Barry E. Kosofsky; Kaleb Yohay; Douglas Ballon; Jonathan P. Dyke; Stephen M. Kaminksy; Neil R. Hackett; Ronald G. Crystal

Late infantile neuronal ceroid lipofuscinosis (LINCL), a fatal, lysosomal storage disorder caused by mutations in the CLN2 gene, results in a deficiency of tripeptidyl-peptidase I (TPP-I) activity in neurons. Our prior studies showed that delivery of the human CLN2 cDNA directly to the CNS, using an adeno-associated virus serotype 2 (AAV2) vector, is safe in children with LINCL. As a second-generation strategy, we have demonstrated that AAVrh.10hCLN2, a rhesus-derived AAV vector, mediates wide distribution of TPP-I through the CNS in a murine model. This study tests the hypothesis that direct administration of AAVrh.10hCLN2 to the CNS of rats and nonhuman primates at doses scalable to humans has an acceptable safety profile and mediates significant CLN2 expression in the CNS. A dose of 10(11) genome copies (GC) was administered bilaterally to the striatum of Sprague Dawley rats with sacrifice at 7 and 90 days with no significant impact except for mild vector-related histopathological changes at the site of vector administration. A dose of 1.8×10(12) GC of AAVrh.10hCLN2 was administered to the CNS of 8 African green monkeys. The vector-treated monkeys did not differ from controls in any safety parameter except for mild to moderate white matter edema and inflammation localized to the administration sites of the vector. There were no clinical sequelae to these localized findings. TPP-I activity was >2 SD over background in 31.7±8.1% of brain at 90 days. These findings establish the dose and safety profile for human clinical studies for the treatment of LINCL with AAVrh.10hCLN2.


Science Translational Medicine | 2014

Hematopoietic Stem Cell Origin of BRAFV600E Mutations in Hairy Cell Leukemia

Stephen S. Chung; Eunhee Kim; Jae H. Park; Young Rock Chung; Piro Lito; Julie Teruya-Feldstein; Wenhuo Hu; Wendy Béguelin; Sebastien Monette; Cihangir Duy; Raajit Rampal; Leon Telis; Minal Patel; Min-Kyung Kim; Kety Huberman; Nancy Bouvier; Michael F. Berger; Ari Melnick; Neal Rosen; Martin S. Tallman; Christopher Y. Park; Omar Abdel-Wahab

The cell of origin for the chronic lymphoproliferative disorder hairy cell leukemia is a long-term hematopoietic stem cell, as shown through human genetic data and murine genetic models. Finding the Origin Story for a Leukemia The cells that give rise to a cancer called hairy cell leukemia are hematopoietic stem cells, the precursors for all the types of normal blood cells, according to a new study by Chung et al. Although hairy cell leukemia is usually thought to be derived from mature B cells, it has not previously been matched with any specific stage of normal B cell development. Now, the authors performed detailed genetic analysis of human leukemia samples and also modeled this cancer in mice with different types of mutations, thus revealing the origin for hairy cell leukemia. Understanding the causes of this leukemia should help guide the design of effective treatments and may improve our understanding of similar cancers. Hairy cell leukemia (HCL) is a chronic lymphoproliferative disorder characterized by somatic BRAFV600E mutations. The malignant cell in HCL has immunophenotypic features of a mature B cell, but no normal counterpart along the continuum of developing B lymphocytes has been delineated as the cell of origin. We find that the BRAFV600E mutation is present in hematopoietic stem cells (HSCs) in HCL patients, and that these patients exhibit marked alterations in hematopoietic stem/progenitor cell (HSPC) frequencies. Quantitative sequencing analysis revealed a mean BRAFV600E-mutant allele frequency of 4.97% in HSCs from HCL patients. Moreover, transplantation of BRAFV600E-mutant HSCs from an HCL patient into immunodeficient mice resulted in stable engraftment of BRAFV600E-mutant human hematopoietic cells, revealing the functional self-renewal capacity of HCL HSCs. Consistent with the human genetic data, expression of BRafV600E in murine HSPCs resulted in a lethal hematopoietic disorder characterized by splenomegaly, anemia, thrombocytopenia, increased circulating soluble CD25, and increased clonogenic capacity of B lineage cells—all classic features of human HCL. In contrast, restricting expression of BRafV600E to the mature B cell compartment did not result in disease. Treatment of HCL patients with vemurafenib, an inhibitor of mutated BRAF, resulted in normalization of HSPC frequencies and increased myeloid and erythroid output from HSPCs. These findings link the pathogenesis of HCL to somatic mutations that arise in HSPCs and further suggest that chronic lymphoid malignancies may be initiated by aberrant HSCs.


Radiology | 2011

Acute and Subacute Effects of Irreversible Electroporation on Nerves: Experimental Study in a Pig Model

Helmut Schoellnast; Sebastien Monette; Paula C. Ezell; Ajita Deodhar; Majid Maybody; Joseph P. Erinjeri; Michael D. Stubblefield; Gordon W. Single; William C. Hamilton; Stephen B. Solomon

PURPOSE To evaluate whether irreversible electroporation (IRE) has the potential to damage nerves in a porcine model and to compare histopathologic findings after IRE with histopathologic findings after radiofrequency ablation (RFA). MATERIALS AND METHODS This study was approved by the institutional animal care and use committee. Computed tomography (CT)-guided IRE of 11 porcine sciatic nerves was performed in nine pigs, and histopathologic analysis was performed on the day of ablation or 3, 6, or 14 days after ablation. In addition, acute RFA of six porcine sciatic nerves was performed in six pigs that were harvested on the day of ablation. All nerves and associated muscles and tissues were assessed for histopathologic findings consistent with athermal or thermal injury, respectively, such as axonal swelling, axonal fragmentation and loss, Wallerian degeneration, inflammatory infiltrates, Schwann cell proliferation, and coagulative necrosis. The percentage of fascicles affected was recorded. RESULTS All nerves had an axonal injury. The percentage of affected nerve fascicles after IRE was 50%-100%. Axonal swelling and perineural inflammatory infiltrates were detectable at every time point after ablation. Axonal fragmentation and loss, macrophage infiltration, and Schwann cell proliferation were found 6 and 14 days after ablation. Distal Wallerian axonal degeneration was observed 14 days after ablation. The endoneurium and perineurium architecture remained intact in all cases. RFA specimens at the day of ablation revealed acute coagulative necrosis associated with intense basophilic staining of extracellular matrix, including collagen of the perineurium and epineurium consistent with thermal injury. CONCLUSION IRE has the potential to damage nerves and may result in axonal swelling, fragmentation, and distal Wallerian degeneration. However, preservation of endoneurium architecture and proliferation of Schwann cells may suggest the potential for axonal regeneration. In contrast, RFA leads to thermal nerve damage, causing protein denaturation, and suggests a much lower potential for regeneration.


Blood | 2011

Deletion of Adam10 in endothelial cells leads to defects in organ-specific vascular structures

Krzysztof Glomski; Sebastien Monette; Katia Manova; B. De Strooper; Paul Saftig; Carl P. Blobel

During vertebrate angiogenesis, Notch regulates the cell-fate decision between vascular tip cells versus stalk cells. Canonical Notch signaling depends on sequential proteolytic events, whereby interaction of Notch with membrane-anchored ligands triggers proteolytic processing, first by Adam10 and then presenilins. This liberates the Notch intracellular domain, allowing it to enter the nucleus and activate Notch-dependent genes. Here we report that conditional inactivation of Adam10 in endothelial cells (A10ΔEC) recapitulates the increased branching and density of the retinal vasculature that is also caused by interfering with Notch signaling. Moreover, A10ΔEC mice have additional vascular abnormalities, including aberrant subcapsular hepatic veins, enlarged glomeruli, intestinal polyps containing endothelial cell masses, abnormal endochondral ossification, leading to stunted long bone growth and increased pathologic neovascularization following oxygen-induced retinopathy. Our findings support a model in which Adam10 is a crucial regulator of endothelial cell-fate decisions, most likely because of its essential role in canonical Notch signaling.


Proceedings of the National Academy of Sciences of the United States of America | 2015

iRhoms 1 and 2 are essential upstream regulators of ADAM17-dependent EGFR signaling.

Xue Li; Thorsten Maretzky; Gisela Weskamp; Sebastien Monette; Xiaoping Qing; Priya Darshinee A. Issuree; Howard C. Crawford; David R. McIlwain; Tak W. Mak; Jane E. Salmon; Carl P. Blobel

Significance The skin and intestinal barrier are controlled by signaling scissors, termed ADAM17 (a disintegrin and metalloprotease 17), that reside in the membrane on the surface of cells. The main purpose of these signaling scissors is to liberate growth factors from their membrane anchor, allowing them to activate their receptors, including the epidermal growth factor receptor (EGFR). The ADAM17/EGFR signaling axis is tightly regulated, yet little is known about the underlying mechanism. Here we use genetic, cell biological, and biochemical approaches to identify two membrane proteins termed iRhoms 1 and 2 (inactive Rhomboid-like proteins) as crucial upstream regulators of ADAM17-dependent EGFR signaling. This uncovers the iRhoms as attractive novel targets to treat ADAM17/EGFR-dependent diseases such as cancer. The metalloproteinase ADAM17 (a disintegrin and metalloprotease 17) controls EGF receptor (EGFR) signaling by liberating EGFR ligands from their membrane anchor. Consequently, a patient lacking ADAM17 has skin and intestinal barrier defects that are likely caused by lack of EGFR signaling, and Adam17−/− mice die perinatally with open eyes, like Egfr−/− mice. A hallmark feature of ADAM17-dependent EGFR ligand shedding is that it can be rapidly and posttranslationally activated in a manner that requires its transmembrane domain but not its cytoplasmic domain. This suggests that ADAM17 is regulated by other integral membrane proteins, although much remains to be learned about the underlying mechanism. Recently, inactive Rhomboid 2 (iRhom2), which has seven transmembrane domains, emerged as a molecule that controls the maturation and function of ADAM17 in myeloid cells. However, iRhom2−/− mice appear normal, raising questions about how ADAM17 is regulated in other tissues. Here we report that iRhom1/2−/− double knockout mice resemble Adam17−/− and Egfr−/− mice in that they die perinatally with open eyes, misshapen heart valves, and growth plate defects. Mechanistically, we show lack of mature ADAM17 and strongly reduced EGFR phosphorylation in iRhom1/2−/− tissues. Finally, we demonstrate that iRhom1 is not essential for mouse development but regulates ADAM17 maturation in the brain, except in microglia, where ADAM17 is controlled by iRhom2. These results provide genetic, cell biological, and biochemical evidence that a principal function of iRhoms1/2 during mouse development is to regulate ADAM17-dependent EGFR signaling, suggesting that iRhoms1/2 could emerge as novel targets for treatment of ADAM17/EGFR-dependent pathologies.


Cell Reports | 2017

The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma

Amrita M. Nargund; Can G. Pham; Yiyu Dong; Patricia Wang; Hatice U. Osmangeyoglu; Yuchen Xie; Omer Aras; Song Han; Toshinao Oyama; Shugaku Takeda; Chelsea E. Ray; Zhenghong Dong; Mathieu Berge; A. Ari Hakimi; Sebastien Monette; Carl L. Lekaye; Jason A. Koutcher; Christina S. Leslie; Chad J. Creighton; Nils Weinhold; William R. Lee; Satish K. Tickoo; Zhong Wang; Emily H. Cheng; James J. Hsieh

PBRM1 is the second most commonly mutated gene after VHL in clear cell renal cell carcinoma (ccRCC). However, the biological consequences of PBRM1 mutations for kidney tumorigenesis are unknown. Here, we find that kidney-specific deletion of Vhl and Pbrm1, but not either gene alone, results in bilateral, multifocal, transplantable clear cell kidney cancers. PBRM1 loss amplified the transcriptional outputs of HIF1 and STAT3 incurred by Vhl deficiency. Analysis of mouse and human ccRCC revealed convergence on mTOR activation, representing the third driver event after genetic inactivation of VHL and PBRM1. Our study reports a physiological preclinical ccRCC mouse model that recapitulates somatic mutations in human ccRCC and provides mechanistic and therapeutic insights into PBRM1 mutated subtypes of human ccRCC.

Collaboration


Dive into the Sebastien Monette's collaboration.

Top Co-Authors

Avatar

Stephen B. Solomon

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Govindarajan Srimathveeravalli

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Majid Maybody

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Paula C. Ezell

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jonathan A. Coleman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jeremy C. Durack

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Joseph P. Erinjeri

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

N. Gutta

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Thomas Wimmer

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Yuman Fong

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge