Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sébastien Villéger is active.

Publication


Featured researches published by Sébastien Villéger.


Ecology | 2008

NEW MULTIDIMENSIONAL FUNCTIONAL DIVERSITY INDICES FOR A MULTIFACETED FRAMEWORK IN FUNCTIONAL ECOLOGY

Sébastien Villéger; Norman W. H. Mason; David Mouillot

Functional diversity is increasingly identified as an important driver of ecosystem functioning. Various indices have been proposed to measure the functional diversity of a community, but there is still no consensus on which are most suitable. Indeed, none of the existing indices meets all the criteria required for general use. The main criteria are that they must be designed to deal with several traits, take into account abundances, and measure all the facets of functional diversity. Here we propose three indices to quantify each facet of functional diversity for a community with species distributed in a multidimensional functional space: functional richness (volume of the functional space occupied by the community), functional evenness (regularity of the distribution of abundance in this volume), and functional divergence (divergence in the distribution of abundance in this volume). Functional richness is estimated using the existing convex hull volume index. The new functional evenness index is based on the minimum spanning tree which links all the species in the multidimensional functional space. Then this new index quantifies the regularity with which species abundances are distributed along the spanning tree. Functional divergence is measured using a novel index which quantifies how species diverge in their distances (weighted by their abundance) from the center of gravity in the functional space. We show that none of the indices meets all the criteria required for a functional diversity index, but instead we show that the set of three complementary indices meets these criteria. Through simulations of artificial data sets, we demonstrate that functional divergence and functional evenness are independent of species richness and that the three functional diversity indices are independent of each other. Overall, our study suggests that decomposition of functional diversity into its three primary components provides a meaningful framework for its quantification and for the classification of existing functional diversity indices. This decomposition has the potential to shed light on the role of biodiversity on ecosystem functioning and on the influence of biotic and abiotic filters on the structure of species communities. Finally, we propose a general framework for applying these three functional diversity indices.


Trends in Ecology and Evolution | 2013

A functional approach reveals community responses to disturbances.

David Mouillot; Nicholas A. J. Graham; Sébastien Villéger; Norman W. H. Mason; David R. Bellwood

Understanding the processes shaping biological communities under multiple disturbances is a core challenge in ecology and conservation science. Traditionally, ecologists have explored linkages between the severity and type of disturbance and the taxonomic structure of communities. Recent advances in the application of species traits, to assess the functional structure of communities, have provided an alternative approach that responds rapidly and consistently across taxa and ecosystems to multiple disturbances. Importantly, trait-based metrics may provide advanced warning of disturbance to ecosystems because they do not need species loss to be reactive. Here, we synthesize empirical evidence and present a theoretical framework, based on species positions in a functional space, as a tool to reveal the complex nature of change in disturbed ecosystems.


Ecological Applications | 2010

Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation.

Sébastien Villéger; Julia Ramos Miranda; Domingo Flores Hernandez; David Mouillot

Human activities have strong impacts on ecosystem functioning through their effect on abiotic factors and on biodiversity. There is also growing evidence that species functional traits link changes in species composition and shifts in ecosystem processes. Hence, it appears to be of utmost importance to quantify modifications in the functional structure of species communities after human disturbance in addition to changes in taxonomic structure. Despite this fact, there is still little consensus on the actual impacts of human-mediated habitat alteration on the components of biodiversity, which include species functional traits. Therefore, we studied changes in taxonomic diversity (richness and evenness), in functional diversity, and in functional specialization of estuarine fish communities facing drastic environmental and habitat alterations. The Terminos Lagoon (Gulf of Mexico) is a tropical estuary of primary concern for its biodiversity, its habitats, and its resource supply, which have been severely impacted by human activities. Fish communities were sampled in four zones of the Terminos Lagoon 18 years apart (1980 and 1998). Two functions performed by fish (food acquisition and locomotion) were studied through the measurement of 16 functional traits. Functional diversity of fish communities was quantified using three independent components: richness, evenness, and divergence. Additionally, we measured the degree of functional specialization in fish communities. We used a null model to compare the functional and the taxonomic structure of fish communities between 1980 and 1998. Among the four largest zones studied, three did not show strong functional changes. In the northern part of the lagoon, we found an increase in fish richness but a significant decrease of functional divergence and functional specialization. We explain this result by a decline of specialized species (i.e., those with particular combinations of traits), while newly occurring species are redundant with those already present. The species that decreased in abundance have functional traits linked to seagrass habitats that regressed consecutively to increasing eutrophication. The paradox found in our study highlights the need for a multifaceted approach in the assessment of biodiversity changes in communities under pressure.


PLOS ONE | 2011

Functional Structure of Biological Communities Predicts Ecosystem Multifunctionality

David Mouillot; Sébastien Villéger; Michael Scherer-Lorenzen; Norman W. H. Mason

The accelerating rate of change in biodiversity patterns, mediated by ever increasing human pressures and global warming, demands a better understanding of the relationship between the structure of biological communities and ecosystem functioning (BEF). Recent investigations suggest that the functional structure of communities, i.e. the composition and diversity of functional traits, is the main driver of ecological processes. However, the predictive power of BEF research is still low, the integration of all components of functional community structure as predictors is still lacking, and the multifunctionality of ecosystems (i.e. rates of multiple processes) must be considered. Here, using a multiple-processes framework from grassland biodiversity experiments, we show that functional identity of species and functional divergence among species, rather than species diversity per se, together promote the level of ecosystem multifunctionality with a predictive power of 80%. Our results suggest that primary productivity and decomposition rates, two key ecosystem processes upon which the global carbon cycle depends, are primarily sustained by specialist species, i.e. those that hold specialized combinations of traits and perform particular functions. Contrary to studies focusing on single ecosystem functions and considering species richness as the sole measure of biodiversity, we found a linear and non-saturating effect of the functional structure of communities on ecosystem multifunctionality. Thus, sustaining multiple ecological processes would require focusing on trait dominance and on the degree of community specialization, even in species-rich assemblages.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs

David Mouillot; Sébastien Villéger; Valeriano Parravicini; Michel Kulbicki; Jesús Ernesto Arias-González; Mariana G. Bender; Pascale Chabanet; Sergio R. Floeter; Alan M. Friedlander; Laurent Vigliola; David R. Bellwood

Significance Our results indicate that, even in highly diverse systems like coral reefs, we can no longer assume that the erosion of species diversity can be discounted by the high probability of functional redundancy: i.e., that several species can support the same function. Indeed, we show that fish species tend to disproportionately pack into a few particular functions while leaving many functions highly vulnerable, i.e., they are supported by just one species. Even the Coral Triangle, which has a high concentration of tropical-reef fishes, may experience a loss of functional diversity following fisheries pressure and local species extirpation. Our results suggest that the promised benefits of functional insurance from high species diversity may not be as strong as we once hoped. When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.


Ecology Letters | 2011

The multidimensionality of the niche reveals functional diversity changes in benthic marine biotas across geological time

Sébastien Villéger; Philip M. Novack-Gottshall; David Mouillot

Despite growing attention on the influence of functional diversity changes on ecosystem functioning, a palaeoecological perspective on the long-term dynamic of functional diversity, including mass extinction crises, is still lacking. Here, using a novel multidimensional functional framework and comprehensive null-models, we compare the functional structure of Cambrian, Silurian and modern benthic marine biotas. We demonstrate that, after controlling for increases in taxonomic diversity, functional richness increased incrementally between each time interval with benthic taxa filling progressively more functional space, combined with a significant functional dissimilarity between periods. The modern benthic biota functionally overlaps with fossil biotas but some modern taxa, especially large predators, have new trait combinations that may allow more functions to be performed. From a methodological perspective, these results illustrate the benefits of using multidimensional instead of lower dimensional functional frameworks when studying changes in functional diversity over space and time.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Homogenization patterns of the world’s freshwater fish faunas

Sébastien Villéger; Simon Blanchet; Olivier Beauchard; Thierry Oberdorff; Sébastien Brosse

The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the “Homogocene era” is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes.


Global Change Biology | 2013

Toward a loss of functional diversity in stream fish assemblages under climate change

Laëtitia Buisson; Gaël Grenouillet; Sébastien Villéger; Julie Canal; Pascal Laffaille

The assessment of climate change impacts on biodiversity has so far been biased toward the taxonomic identification of the species likely either to benefit from climate modifications or to experience overall declines. There have still been few studies intended to correlate the characteristics of species to their sensitivity to climate change, even though it is now recognized that functional trait-based approaches are promising tools for addressing challenges related to global changes. In this study, two functional indices (originality and uniqueness) were first measured for 35 fish species occurring in French streams. They were then combined to projections of range shifts in response to climate change derived from species distribution models. We set out to investigate: (1) the relationship between the degrees of originality and uniqueness of fish species, and their projected response to future climate change; and (2) the consequences of individual responses of species for the functional diversity of fish assemblages. After accounting for phylogenetic relatedness among species, we have demonstrated that the two indices used measure two complementary facets of the position of fish species in a functional space. We have also rejected the hypothesis that the most original and/or less redundant species would necessarily experience the greatest declines in habitat suitability as a result of climate change. However, individual species range shifts could lead simultaneously both to a severe decline in the functional diversity of fish assemblages, and to an increase in the functional similarity among assemblages, supporting the hypothesis that disturbance favors communities with combination of common traits and biotic homogenization as well. Our findings therefore emphasize the importance of going beyond the simple taxonomic description of diversity to provide a better assessment of the likely future effects of environmental changes on biodiversity, thus helping to design more effective conservation and management measures.


PLOS ONE | 2012

Low Functional β -Diversity Despite High Taxonomic β -Diversity among Tropical Estuarine Fish Communities

Sébastien Villéger; Julia Ramos Miranda; Domingo Flores Hernandez; David Mouillot

The concept of β-diversity, defined as dissimilarity among communities, has been widely used to investigate biodiversity patterns and community assembly rules. However, in ecosystems with high taxonomic β-diversity, due to marked environmental gradients, the level of functional β-diversity among communities is largely overlooked while it may reveal processes shaping community structure. Here, decomposing biodiversity indices into α (local) and γ (regional) components, we estimated taxonomic and functional β-diversity among tropical estuarine fish communities, through space and time. We found extremely low functional β-diversity values among fish communities (<1.5%) despite high dissimilarity in species composition and species dominance. Additionally, in contrast to the high α and γ taxonomic diversities, α and γ functional diversities were very close to the minimal value. These patterns were caused by two dominant functional groups which maintained a similar functional structure over space and time, despite the strong dissimilarity in taxonomic structure along environmental gradients. Our findings suggest that taxonomic and functional β-diversity deserve to be quantified simultaneously since these two facets can show contrasting patterns and the differences can in turn shed light on community assembly rules.


Proceedings of the Royal Society B: Biological Sciences | 2016

Rare species contribute disproportionately to the functional structure of species assemblages.

Rafael P. Leitão; Jansen Zuanon; Sébastien Villéger; Stephen E. Williams; Christopher Baraloto; Claire Fortunel; Fernando P. Mendonça; David Mouillot

There is broad consensus that the diversity of functional traits within species assemblages drives several ecological processes. It is also widely recognized that rare species are the first to become extinct following human-induced disturbances. Surprisingly, however, the functional importance of rare species is still poorly understood, particularly in tropical species-rich assemblages where the majority of species are rare, and the rate of species extinction can be high. Here, we investigated the consequences of local and regional extinctions on the functional structure of species assemblages. We used three extensive datasets (stream fish from the Brazilian Amazon, rainforest trees from French Guiana, and birds from the Australian Wet Tropics) and built an integrative measure of species rarity versus commonness, combining local abundance, geographical range, and habitat breadth. Using different scenarios of species loss, we found a disproportionate impact of rare species extinction for the three groups, with significant reductions in levels of functional richness, specialization, and originality of assemblages, which may severely undermine the integrity of ecological processes. The whole breadth of functional abilities within species assemblages, which is disproportionately supported by rare species, is certainly critical in maintaining ecosystems particularly under the ongoing rapid environmental transitions.

Collaboration


Dive into the Sébastien Villéger's collaboration.

Top Co-Authors

Avatar

David Mouillot

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Claverie

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corinne Bouvier

University of Montpellier

View shared research outputs
Researchain Logo
Decentralizing Knowledge