Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sébastien Wielgoss is active.

Publication


Featured researches published by Sébastien Wielgoss.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load

Sébastien Wielgoss; Jeffrey E. Barrick; Olivier Tenaillon; Michael J. Wiser; W. James Dittmar; Stéphane Cruveiller; Béatrice Chane-Woon-Ming; Claudine Médigue; Richard E. Lenski; Dominique Schneider

Mutations are the ultimate source of heritable variation for evolution. Understanding how mutation rates themselves evolve is thus essential for quantitatively understanding many evolutionary processes. According to theory, mutation rates should be minimized for well-adapted populations living in stable environments, whereas hypermutators may evolve if conditions change. However, the long-term fate of hypermutators is unknown. Using a phylogenomic approach, we found that an adapting Escherichia coli population that first evolved a mutT hypermutator phenotype was later invaded by two independent lineages with mutY mutations that reduced genome-wide mutation rates. Applying neutral theory to synonymous substitutions, we dated the emergence of these mutations and inferred that the mutT mutation increased the point-mutation rate by ∼150-fold, whereas the mutY mutations reduced the rate by ∼40–60%, with a corresponding decrease in the genetic load. Thus, the long-term fate of the hypermutators was governed by the selective advantage arising from a reduced mutation rate as the potential for further adaptation declined.


Nature | 2016

Tempo and mode of genome evolution in a 50,000-generation experiment

Olivier Tenaillon; Jeffrey E. Barrick; Noah Ribeck; Daniel E. Deatherage; Jeffrey L. Blanchard; Aurko Dasgupta; Gabriel C. Wu; Sébastien Wielgoss; Stéphane Cruveiller; Claudine Médigue; Dominique Schneider; Richard E. Lenski

Adaptation by natural selection depends on the rates, effects and interactions of many mutations, making it difficult to determine what proportion of mutations in an evolving lineage are beneficial. Here we analysed 264 complete genomes from 12 Escherichia coli populations to characterize their dynamics over 50,000 generations. The populations that retained the ancestral mutation rate support a model in which most fixed mutations are beneficial, the fraction of beneficial mutations declines as fitness rises, and neutral mutations accumulate at a constant rate. We also compared these populations to mutation-accumulation lines evolved under a bottlenecking regime that minimizes selection. Nonsynonymous mutations, intergenic mutations, insertions and deletions are overrepresented in the long-term populations, further supporting the inference that most mutations that reached high frequency were favoured by selection. These results illuminate the shifting balance of forces that govern genome evolution in populations adapting to a new environment.


G3: Genes, Genomes, Genetics | 2011

Mutation Rate Inferred From Synonymous Substitutions in a Long-Term Evolution Experiment With Escherichia coli

Sébastien Wielgoss; Jeffrey E. Barrick; Olivier Tenaillon; Stéphane Cruveiller; Béatrice Chane-Woon-Ming; Claudine Médigue; Richard E. Lenski; Dominique Schneider

The quantification of spontaneous mutation rates is crucial for a mechanistic understanding of the evolutionary process. In bacteria, traditional estimates using experimental or comparative genetic methods are prone to statistical uncertainty and consequently estimates vary by over one order of magnitude. With the advent of next-generation sequencing, more accurate estimates are now possible. We sequenced 19 Escherichia coli genomes from a 40,000-generation evolution experiment and directly inferred the point-mutation rate based on the accumulation of synonymous substitutions. The resulting estimate was 8.9 × 10−11 per base-pair per generation, and there was a significant bias toward increased AT-content. We also compared our results with published genome sequence datasets for other bacterial evolution experiments. Given the power of our approach, our estimate represents the most accurate measure of bacterial base-substitution rates available to date.


Molecular Ecology | 2008

Population structure of the parasitic nematode Anguillicola crassus, an invader of declining North Atlantic eel stocks

Sébastien Wielgoss; Horst Taraschewski; Axel Meyer; Thierry Wirth

Probably half of all animal species exhibit a parasitic lifestyle and numerous parasites have recently expanded their distribution and host ranges due to anthropogenic activities. Here, we report on the population genetic structure of the invasive nematode Anguillicola crassus, a parasite in freshwater eels, which recently spread from Asia to Europe and North America. Samples were collected from the newly colonized naïve host species Anguilla anguilla (Europe) and Anguilla rostrata (North America), and from indigenous Anguilla japonica in Taiwan and Japan. Using seven microsatellite loci and one mitochondrial marker, we show that the parasites population structure in Europe mirrors the zoogeographic Boreal–Lusitanian break along the English Channel. Both the north‐to‐south decline of nuclear allelic diversity and the loss of private alleles in the same direction are consistent with a significant isolation‐by‐distance pattern based on ρST values. In combination with the specific topology of the distance tree among nematode populations, our data suggest that Europe was invaded only once from Taiwan, and that subsequently, genetic diversity was lost due to random drift. On the contrary, the North American sample shares distinct nuclear and mitochondrial signatures with Japanese specimens. We propose that the genetic structure in Europe was shaped by long‐range anthropogenic eel host transfers in the north and a single dispersal event into the southwest. The genetically distinct Brittany sample at the edge of the Boreal–Lusitanian boundary is indicative of natural dispersal of fish hosts since recruitment occurs naturally there and invertebrate host dissemination is interrupted due to oceanic currents.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Rapid and widespread de novo evolution of kin discrimination

Olaya Rendueles; Peter C. Zee; Iris Dinkelacker; Michaela Amherd; Sébastien Wielgoss; Gregory J. Velicer

Significance Relatedness-dependent behavior modification is common among social organisms and has been a major feature of social evolution theory for decades. However, the evolutionary causes of kin discrimination are often unclear. Here, we document many spontaneous origins of kin discrimination in a social microbe that appear to arise as indirect byproducts of adaptation at other traits and we show that kin discrimination evolves by diverse genetic mechanisms. Diverse forms of kin discrimination, broadly defined as alteration of social behavior as a function of genetic relatedness among interactants, are common among social organisms from microbes to humans. However, the evolutionary origins and causes of kin-discriminatory behavior remain largely obscure. One form of kin discrimination observed in microbes is the failure of genetically distinct colonies to merge freely upon encounter. Here, we first use natural isolates of the highly social bacterium Myxococcus xanthus to show that colony-merger incompatibilities can be strong barriers to social interaction, particularly by reducing chimerism in multicellular fruiting bodies that develop near colony-territory borders. We then use experimental laboratory populations to test hypotheses regarding the evolutionary origins of kin discrimination. We show that the generic process of adaptation, irrespective of selective environment, is sufficient to repeatedly generate kin-discriminatory behaviors between evolved populations and their common ancestor. Further, we find that kin discrimination pervasively evolves indirectly between allopatric replicate populations that adapt to the same ecological habitat and that this occurs generically in many distinct habitats. Patterns of interpopulation discrimination imply that kin discrimination phenotypes evolved via many diverse genetic mechanisms and mutation-accumulation patterns support this inference. Strong incompatibility phenotypes emerged abruptly in some populations but strengthened gradually in others. The indirect evolution of kin discrimination in an asexual microbe is analogous to the indirect evolution of reproductive incompatibility in sexual eukaryotes and linguistic incompatibility among human cultures, the commonality being indirect, noncoordinated divergence of complex systems evolving in isolation.


Parasitology Research | 2008

Parasite communities in eels of the Island of Reunion (Indian Ocean): a lesson in parasite introduction.

Pierre Sasal; Horst Taraschewski; Pierre Valade; Henri Grondin; Sébastien Wielgoss; František Moravec

Eel populations from the small rivers on the Island of Reunion (French Overseas Department in the Indian Ocean) were investigated with respect to the occurrence and abundance of helminths during the autumn of 2005. The native species Anguilla marmorata (n = 80), Anguilla bicolor (n = 23), and Anguilla mossambica (n = 15) were studied. Six species of helminths were identified, four of them having a definitely nonnative status. Furthermore, unidentified intra-intestinal juvenile cestodes and extra-intestinal encapsulated anisakid nematode larvae were present in a few eels. We found that the invasive swim bladder nematode Anguillicoloides (Anguillicola) crassus had been introduced into the island. Six specimens were collected, four from A. marmorata, one from A. bicolor and one from A. mossambica. The maximum intensity of infection was two worms. The other helminths also showed a low abundance. These species were the monogenean gill worms Pseudodactylogyrus anguillae and Pseudodactylogyrus bini and the intestinal parasites Bothriocephalus claviceps (Cestodes), Paraquimperia africana (Nematodes), and the acanthocephalan Acanthocephalus reunionensis Warner, Sasal, and Taraschewski, 2007. The latter species, found as intra-intestinal immatures, is thought to utilize amphibians as required hosts; its status, introduced or native, could not be determined. P. africana was described from A. mossambica in South Africa and has not been recorded outside Africa. The other species are known from populations of European and American eels. However, A. crassus and the two Pseudodactylogyrus species originate from East Asia, where they are indigenous parasites of Anguilla japonica. Both an assignment test based on seven specific microsatellite loci and subsequent sequencing of mitochondrial haplotypes of a partial fragment of cytochrome c oxidase 1 strongly suggest that the A. crassus may originated around the Baltic Sea. According to the results presented here, populations of the indigenous eel species from Reunion can be considered to harbor extremely isolationist alien parasite communities. Our findings support the hypothesis that during the present time of global biological change, invasion by a nonnative species into a target island is more likely to reflect the political affiliation of the colonized environment and the pathways of trade and tourism than geographic proximity between donor and recipient areas or other natural circumstances.


The ISME Journal | 2016

A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus.

Sébastien Wielgoss; Xavier Didelot; Roy R. Chaudhuri; Xuan Liu; Gareth D. Weedall; Gregory J. Velicer; Michiel Vos

The bacterium Myxococcus xanthus glides through soil in search of prey microbes, but when food sources run out, cells cooperatively construct and sporulate within multicellular fruiting bodies. M. xanthus strains isolated from a 16 × 16-cm-scale patch of soil were previously shown to have diversified into many distinct compatibility types that are distinguished by the failure of swarming colonies to merge upon encounter. We sequenced the genomes of 22 isolates from this population belonging to the two most frequently occurring multilocus sequence type (MLST) clades to trace patterns of incipient genomic divergence, specifically related to social divergence. Although homologous recombination occurs frequently within the two MLST clades, we find an almost complete absence of recombination events between them. As the two clades are very closely related and live in sympatry, either ecological or genetic barriers must reduce genetic exchange between them. We find that the rate of change in the accessory genome is greater than the rate of amino-acid substitution in the core genome. We identify a large genomic tract that consistently differs between isolates that do not freely merge and therefore is a candidate region for harbouring gene(s) responsible for self/non-self discrimination.


Journal of Bacteriology | 2015

devI Is an Evolutionarily Young Negative Regulator of Myxococcus xanthus Development

Ramya Rajagopalan; Sébastien Wielgoss; Gerardo Lippert; Gregory J. Velicer; Lee Kroos

UNLABELLED During starvation-induced development of Myxococcus xanthus, thousands of rod-shaped cells form mounds in which they differentiate into spores. The dev locus includes eight genes followed by clustered regularly interspaced short palindromic repeats (CRISPRs), comprising a CRISPR-Cas system (Cas stands for CRISPR associated) typically involved in RNA interference. Mutations in devS or devR of a lab reference strain permit mound formation but impair sporulation. We report that natural isolates of M. xanthus capable of normal development are highly polymorphic in the promoter region of the dev operon. We show that the dev promoter is predicted to be nonfunctional in most natural isolates and is dispensable for development of a laboratory reference strain. Moreover, deletion of the dev promoter or the small gene immediately downstream of it, here designated devI (development inhibitor), suppressed the sporulation defect of devS or devR mutants in the lab strain. Complementation experiments and the result of introducing a premature stop codon in devI support a model in which DevRS proteins negatively autoregulate expression of devI, whose 40-residue protein product DevI inhibits sporulation if overexpressed. DevI appears to act in a cell-autonomous manner since experiments with conditioned medium and with cell mixtures gave no indication of extracellular effects. Strikingly, we report that devI is entirely absent from most M. xanthus natural isolates and was only recently integrated into the developmental programs of some lineages. These results provide important new insights into both the evolutionary history of the dev operon and its mechanistic role in M. xanthus sporulation. IMPORTANCE Certain mutations in the dev CRISPR-Cas (clustered regularly interspaced short palindromic repeat-associated) system of Myxococcus xanthus impair sporulation. The link between development and a CRISPR-Cas system has been a mystery. Surprisingly, DNA sequencing of natural isolates revealed that many appear to lack a functional dev promoter, yet these strains sporulate normally. Deletion of the dev promoter or the small gene downstream of it suppressed the sporulation defect of a lab strain with mutations in dev genes encoding Cas proteins. The results support a model in which the Cas proteins DevRS prevent overexpression of the small gene devI, which codes for an inhibitor of sporulation. Phylogenetic analysis of natural isolates suggests that devI and the dev promoter were only recently acquired in some lineages.


Molecular Ecology | 2016

The biogeography of kin discrimination across microbial neighbourhoods.

Susanne A. Kraemer; Sébastien Wielgoss; Francesca Fiegna; Gregory J. Velicer

The spatial distribution of potential interactants is critical to social evolution in all cooperative organisms. Yet the biogeography of microbial kin discrimination at the scales most relevant to social interactions is poorly understood. Here we resolve the microbiogeography of social identity and genetic relatedness in local populations of the model cooperative bacterium Myxococcus xanthus at small spatial scales, across which the potential for dispersal is high. Using two criteria of relatedness—colony‐merger compatibility during cooperative motility and DNA‐sequence similarity at highly polymorphic loci—we find that relatedness decreases greatly with spatial distance even across the smallest scale transition. Both social relatedness and genetic relatedness are maximal within individual fruiting bodies at the micrometre scale but are much lower already across adjacent fruiting bodies at the millimetre scale. Genetic relatedness was found to be yet lower among centimetre‐scale samples, whereas social allotype relatedness decreased further only at the metre scale, at and beyond which the probability of social or genetic identity among randomly sampled isolates is effectively zero. Thus, in M. xanthus, high‐relatedness patches form a rich mosaic of diverse social allotypes across fruiting body neighbourhoods at the millimetre scale and beyond. Individuals that migrate even short distances across adjacent groups will frequently encounter allotypic conspecifics and territorial kin discrimination may profoundly influence the spatial dynamics of local migration. Finally, we also found that the phylogenetic scope of intraspecific biogeographic analysis can affect the detection of spatial structure, as some patterns evident in clade‐specific analysis were masked by simultaneous analysis of all strains.


BMC Evolutionary Biology | 2014

Introgressive hybridization and latitudinal admixture clines in North Atlantic eels

Sébastien Wielgoss; Aude Gilabert; Axel Meyer; Thierry Wirth

BackgroundHybridization, the interbreeding of diagnosably divergent species, is a major focus in evolutionary studies. Eels, both from North America and Europe migrate through the Atlantic to mate in a vast, overlapping area in the Sargasso Sea. Due to the lack of direct observation, it is unknown how these species remain reproductively isolated. The detection of inter-species hybrids in Iceland suggests on-going gene flow, but few studies to date have addressed the influence of introgression on genetic differentiation in North Atlantic eels.ResultsHere, we show that while mitochondrial lineages remain completely distinct on both sides of the Atlantic, limited hybridization is detectable with nuclear DNA markers. The nuclear hybridization signal peaks in the northern areas and decreases towards the southern range limits on both continents according to Bayesian assignment analyses. By simulating increasing proportions of both F1 hybrids and admixed individuals from the southern to the northern-most locations, we were able to generate highly significant isolation-by-distance patterns in both cases, reminiscent of previously published data for the European eel. Finally, fitting an isolation-with-migration model to our data supports the hypothesis of recent asymmetric introgression and refutes the alternative hypothesis of ancient polymorphism.ConclusionsFluctuating degrees of introgressive hybridization between Atlantic eel species are sufficient to explain temporally varying correlations of geographic and genetic distances reported for populations of the European eel.

Collaboration


Dive into the Sébastien Wielgoss's collaboration.

Top Co-Authors

Avatar

Axel Meyer

University of Konstanz

View shared research outputs
Top Co-Authors

Avatar

Thierry Wirth

École pratique des hautes études

View shared research outputs
Top Co-Authors

Avatar

Jeffrey E. Barrick

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudine Médigue

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Stéphane Cruveiller

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge