Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sehee Park is active.

Publication


Featured researches published by Sehee Park.


Scientific Reports | 2016

The recent ancestry of Middle East respiratory syndrome coronavirus in Korea has been shaped by recombination

Jin Il Kim; You Jin Kim; Philippe Lemey; Ilseob Lee; Sehee Park; Joon Yong Bae; Donghwan Kim; Hyejin Kim; Seok Il Jang; Jeong Sun Yang; Hak Yong Kim; Dae Won Kim; Jeong Gu Nam; Sung Soon Kim; Kisoon Kim; Jae Myun Lee; Man Ki Song; Daesub Song; Jun Chang; Kee Jong Hong; Yong-Soo Bae; Jin Won Song; Joo Shil Lee; Man Seong Park

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe cases of human respiratory disease. Since 2012, the victims have mainly come from the Middle East countries or sporadically from some other geographical regions seeded by the travelers who visited the Middle East. Such an introduction through travelling led to the emergence of a MERS-CoV outbreak in Korea in May 2015, which caused more than 140 confirmed human cases in less than a month. Using 70 complete genome sequences of MERS-CoV isolates, including the most recent sequences for the Korean and Chinese isolates, we reconstructed the phylogenetic relationships of the complete genome and the individual protein coding regions. The Korean MERS-CoV strain clustered in the previously established Hafr-Al-Batin-1_2013 clade together with two Saudi Arabian and one Chinese strain sampled in 2015. Although these four strains remained monophyletic in the entire protein-coding region, this clade showed different phylogenetic relationships across the genome, indicating a shared unique recombination pattern that is different from previously reported putative recombination strains. Our findings suggest that the recent ancestor of the Korean and its related MERS-CoV strains is characterized by unique mosaic genome pattern that is different from other putative recombinants.


PLOS ONE | 2014

Combination effects of peramivir and favipiravir against oseltamivir-resistant 2009 pandemic influenza A(H1N1) infection in mice.

Sehee Park; Jin Il Kim; Ilseob Lee; Sangmoo Lee; Min Woong Hwang; Joon Yong Bae; Jun Heo; Donghwan Kim; Seok Il Jang; Hyejin Kim; Hee Jin Cheong; Jin Won Song; Ki Joon Song; Luck Ju Baek; Man Seong Park

Antiviral drugs are being used for therapeutic purposes against influenza illness in humans. However, antiviral-resistant variants often nullify the effectiveness of antivirals. Combined medications, as seen in the treatment of cancers and other infectious diseases, have been suggested as an option for the control of antiviral-resistant influenza viruses. Here, we evaluated the therapeutic value of combination therapy against oseltamivir-resistant 2009 pandemic influenza H1N1 virus infection in DBA/2 mice. Mice were treated for five days with favipiravir and peramivir starting 4 hours after lethal challenge. Compared with either monotherapy, combination therapy saved more mice from viral lethality and resulted in increased antiviral efficacy in the lungs of infected mice. Furthermore, the synergism between the two antivirals, which was consistent with the survival outcomes of combination therapy, indicated that favipiravir could serve as a critical agent of combination therapy for the control of oseltamivir-resistant strains. Our results provide new insight into the feasibility of favipiravir in combination therapy against oseltamivir-resistant influenza virus infection.


Scientific Reports | 2016

Reassortment compatibility between PB1, PB2, and HA genes of the two influenza B virus lineages in mammalian cells

Jin Il Kim; Ilseob Lee; Sehee Park; Joon Yong Bae; Kirim Yoo; Philippe Lemey; Mee Sook Park; Jin Won Song; Sun Ho Kee; Ki Joon Song; Man Seong Park

In addition to influenza A subtypes, two distinct lineages of influenza B virus also cause seasonal epidemics to humans. Recently, Dudas et al. have done evolutionary analyses of reassortment patterns of the virus and suggested genetic lineage relationship between PB1, PB2, and HA genes. Using genetic plasmids and reassortant viruses, we here demonstrate that a homologous lineage PB1-PB2 pair exhibits better compatibility than a heterologous one and that the lineage relationship between PB1 and HA is more important for viral replication than that between PB2 and HA. However, co-adaptation of PB1-PB2-HA genes appears to be affected by complete gene constellation.


Biochemical and Biophysical Research Communications | 2016

Effects of HA and NA glycosylation pattern changes on the transmission of avian influenza A(H7N9) virus in guinea pigs

Sehee Park; Ilseob Lee; Jin Il Kim; Joon Yong Bae; Kirim Yoo; Kim Jh; Misun Nam; Miso Park; Soo Hyeon Yun; Woo In Cho; Yeong Su Kim; Yun Young Ko; Man Seong Park

Avian influenza H7N9 virus has posed a concern of potential human-to-human transmission by resulting in seasonal virus-like human infection cases. To address the issue of sustained human infection with the H7N9 virus, here we investigated the effects of hemagglutinin (HA) and neuraminidase (NA) N-linked glycosylation (NLG) patterns on influenza virus transmission in a guinea pig model. Based on the NLG signatures identified in the HA and NA genetic sequences of H7N9 viruses, we generated NLG mutant viruses using either HA or NA gene of a H7N9 virus, A/Anhui/01/2013, by reverse genetics on the 2009 pandemic H1N1 virus backbone. For the H7 HA NLG mutant viruses, NLG pattern changes appeared to reduce viral transmissibility in guinea pigs. Intriguingly, however, the NLG changes in the N9 NA protein, such as a removal from residue 42 or 66 or an addition at residue 266, increased transmissibility of the mutant viruses by more than 33%, 50%, and 16%, respectively, compared with a parental N9 virus. Given the effects of HA-NA NLG changes with regard to viral transmission, we then generated the HA-NA NLG mutant viruses harboring the H7 HA of double NLG addition and the N9 NA of various NLG patterns. As seen in the HA NLG mutants above, the double NLG-added H7 HA decreased viral transmissibility. However, when the NA NLG changes occurred by a removal of residue 66 and an addition at 266 were additionally accompanied, the HA-NA NLG mutant virus recovered the transmissibility of its parental virus. These demonstrate the effects of specific HA-NA NLG changes on the H7N9 virus transmission by highlighting the importance of a HA-NA functional balance.


Biochemical and Biophysical Research Communications | 2014

The PDZ-binding motif of the avian NS1 protein affects transmission of the 2009 influenza A(H1N1) virus

Jin Il Kim; Min Woong Hwang; Ilseob Lee; Sehee Park; Sangmoo Lee; Joon Yong Bae; Jun Heo; Donghwan Kim; Seok Il Jang; Mee Sook Park; Hyung Joo Kwon; Jin Won Song; Man Seong Park

By nature of their segmented RNA genome, influenza A viruses (IAVs) have the potential to generate variants through a reassortment process. The influenza nonstructural (NS) gene is critical for a virus to counteract the antiviral responses of the host. Therefore, a newly acquired NS segment potentially determines the replication efficiency of the reassortant virus in a range of different hosts. In addition, the C-terminal PDZ-binding motif (PBM) has been suggested as a pathogenic determinant of IAVs. To gauge the pandemic potential from human and avian IAV reassortment, we assessed the replication properties of NS-reassorted viruses in cultured cells and in the lungs of mice and determined their transmissibility in guinea pigs. Compared with the recombinant A/Korea/01/2009 virus (rK09; 2009 pandemic H1N1 strain), the rK09/VN:NS virus, in which the NS gene was adopted from the A/Vietnam/1203/2004 virus (a human isolate of the highly pathogenic avian influenza H5N1 virus strains), exhibited attenuated virulence and reduced transmissibility. However, the rK09/VN:NS-PBM virus, harboring the PBM in the C-terminus of the NS1 protein, recovered the attenuated virulence of the rK09/VN:NS virus. In a guinea pig model, the rK09/VN:NS-PBM virus showed even greater transmission efficiency than the rK/09 virus. These results suggest that the PBM in the NS1 protein may determine viral persistence in the human and avian IAV interface.


BMC Microbiology | 2014

Inhibition of Pseudomonas aeruginosa with a recombinant RNA-based viral vector expressing human β-defensin 4

Sehee Park; Jin Il Kim; Ilseob Lee; Joon Yong Bae; Min Woong Hwang; Donghwan Kim; Seok Il Jang; Hyejin Kim; Mee Sook Park; Hyung Joo Kwon; Jin Won Song; Yong Suk Cho; Wook Chun; Man Seong Park

BackgroundHarassed with extensive epithelial burn wounds, patients can be affected by complications, such as infection, hypovolemic shock, hypothermia, and respiratory failure. Immediate first aid and followed supportive cares are critical for the prevention of severe complications. However, secondary bacterial infection is hard to be controlled in burn patients, and Pseudomonas aeruginosa (P. aeruginosa) is one of the top listed pathogens perturbing burn wounds beyond the antibiotics spectrum.ResultsTo find the way for efficacious protection from the pseudomonas-mediated complications in burn patients, we assessed the in vitro and in vivo inhibitory values of human β-defensin 4 (hBD4), which is known as a member of the cationic, antimicrobial peptides found in human cells of many kinds. The Newcastle disease virus (NDV) was used as a viral vector for the expression of hBD4 in burn wounds. Expressed from the recombinant NDV (rNDV-hBD4), hBD4 effectively inhibited the pseudomonal growths in cell culture media. In a mouse model, severely burn-injured skin was recovered by the direct installation of the rNDV-hBD4 infected cells in the burn wounds whereas that of control mice remained severely damaged.ConclusionsWe suggest that the application of hBD4 may protect burn patients from secondary pseudomonal infection and provide a therapeutic potential for burn wound treatment.


Scientific Reports | 2017

Single PA mutation as a high yield determinant of avian influenza vaccines

Ilseob Lee; Jin Il Kim; Sehee Park; Joon Yong Bae; Kirim Yoo; Soo Hyeon Yun; Joo Yeon Lee; Kisoon Kim; Chun Kang; Man Seong Park

Human infection with an avian influenza virus persists. To prepare for a potential outbreak of avian influenza, we constructed a candidate vaccine virus (CVV) containing hemagglutinin (HA) and neuraminidase (NA) genes of a H5N1 virus and evaluated its antigenic stability after serial passaging in embryonated chicken eggs. The passaged CVV harbored the four amino acid mutations (R136K in PB2; E31K in PA; A172T in HA; and R80Q in M2) without changing its antigenicity, compared with the parental CVV. Notably, the passaged CVV exhibited much greater replication property both in eggs and in Madin-Darby canine kidney and Vero cells. Of the four mutations, the PA E31K showed the greatest effect on the replication property of reverse genetically-rescued viruses. In a further luciferase reporter, mini-replicon assay, the PA mutation appeared to affect the replication property by increasing viral polymerase activity. When applied to different avian influenza CVVs (H7N9 and H9N2 subtypes), the PA E31K mutation resulted in the increases of viral replication in the Vero cell again. Taken all together, our results suggest the PA E31K mutation as a single, substantial growth determinant of avian influenza CVVs and for the establishment of a high-yield avian influenza vaccine backbone.


Archives of Virology | 2014

Effects of a hemagglutinin D222G substitution on the pathogenicity of 2009 influenza A (H1N1) virus in mice

Jin Il Kim; Ilseob Lee; Sehee Park; Sangmoo Lee; Min Woong Hwang; Joon Yong Bae; Jun Heo; Donghwan Kim; Seok Il Jang; Jin Won Song; Man Seong Park

The surface glycoprotein hemagglutinin (HA) of influenza virus initiates the infection process by binding to sialic acid receptors on upper respiratory cells in the host. In contrast to avian influenza viruses, which bind to sialic acids connected by an α2-3 linkage to the penultimate galactose, human influenza viruses prefer sialic acids with an α2-6 linkage. Recently, there have been multiple cases of severe human infections associated with an HA D222G mutant influenza virus. In this study, we have investigated the pathogenic effects of the HA D222G substitution in a 2009 pandemic H1N1 virus in mice. Compared with the A/Korea/01/2009 (K/09) virus, the HA D222G mutant showed reduced growth in cells and reduced binding avidity to human and turkey red blood cells. In a BALB/c mouse infection model, infection with the HA D222G mutant virus resulted in less body weight loss when compared to the parental K/09 virus. Altogether, our data suggest that the HA D222G substitution in the K/09 virus might be deleterious to viral fitness.


Scientific Reports | 2017

Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses

Sehee Park; Jin Il Kim; Ilseob Lee; Joon Yong Bae; Kirim Yoo; Misun Nam; Kim Jh; Mee Sook Park; Ki Joon Song; Jin Won Song; Sun Ho Kee; Man Seong Park

It has been noticed that neuraminidase (NA) stalk truncation has arisen from evolutionary adaptation of avian influenza A viruses (IAVs) from wild aquatic birds to domestic poultry. We identified this molecular alteration after the adaptation of a 2009 pandemic H1N1 virus (pH1N1) in BALB/c mice. The mouse-adapted pH1N1 lost its eight consecutive amino acids including one potential N-linked glycosite from the NA stalk region. To explore the relationship of NA stalk truncation or deglycosylation with viral pathogenicity changes, we generated NA stalk mutant viruses on the pH1N1 backbone by reverse genetics. Intriguingly, either NA stalk truncation or deglycosylation changed pH1N1 into a lethal virus to mice by resulting in extensive pathologic transformation in the mouse lungs and systemic infection affecting beyond the respiratory organs in mice. The increased pathogenicity of these NA stalk mutants was also reproduced in ferrets. In further investigation using a human-infecting H7N9 avian IAV strain, NA stalk truncation or deglycosylation enhanced the replication property and pathogenicity of H7N9 NA stalk mutant viruses in the same mouse model. Taken together, our results suggest that NA stalk truncation or deglycosylation can be the pathogenic determinants of seasonal influenza viruses associated with the evolutionary adaptation of IAVs.


PLOS ONE | 2016

Genome-Wide Analysis of Human Metapneumovirus Evolution.

Jin Il Kim; Sehee Park; Ilseob Lee; Kwang Sook Park; Eun Jung Kwak; Kwang Mee Moon; Chang Kyu Lee; Joon Yong Bae; Man Seong Park; Ki Joon Song

Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs.

Collaboration


Dive into the Sehee Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge