Seigo Ito
University of Hyogo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Seigo Ito.
Accounts of Chemical Research | 2009
Hiroshi Imahori; Tomokazu Umeyama; Seigo Ito
Recently, dye-sensitized solar cells have attracted much attention relevant to global environmental issues. Thus far, ruthenium(II) bipyridyl complexes have proven to be the most efficient TiO(2) sensitizers in dye-sensitized solar cells. However, a gradual increment in the highest power conversion efficiency has been recognized in the past decade. More importantly, considering that ruthenium is a rare metal, novel dyes without metal or using inexpensive metal are desirable for highly efficient dye-sensitized solar cells. Large pi-aromatic molecules, such as porphyrins, phthalocyanines, and perylenes, are important classes of potential sensitizers for highly efficient dye-sensitized solar cells, owing to their photostability and high light-harvesting capabilities that can allow applications in thinner, low-cost dye-sensitized solar cells. Porphyrins possess an intense Soret band at 400 nm and moderate Q bands at 600 nm. Nevertheless, the poor light-harvesting properties relative to the ruthenium complexes have limited the cell performance of porphyrin-sensitized TiO(2) cells. Elongation of the pi conjugation and loss of symmetry in porphyrins cause broadening and a red shift of the absorption bands together with an increasing intensity of the Q bands relative to that of the Soret band. On the basis of the strategy, the cell performance of porphyrin-sensitized solar cells has been improved intensively by the enhanced light absorption. Actually, some push-pull-type porphyrins have disclosed a remarkably high power conversion efficiency (6-7%) that was close to that of the ruthenium complexes. Phthalocyanines exhibit strong absorption around 300 and 700 nm and redox features that are similar to porphyrins. Moreover, phthalocyanines are transparent over a large region of the visible spectrum, thereby enabling the possibility of using them as photovoltaic windows. However, the cell performance was poor, owing to strong aggregation and lack of directionality in the excited state. Novel unsymmetrical zinc phthalocyanine sensitizers with push and pull groups have made it possible to reduce the aggregation on a TiO(2) surface, tune the level of the excited state, and strengthen the electronic coupling between the phthalocyanine core and the TiO(2) surface. As a result, the power conversion efficiency of up to 3.5% has been achieved. Perylenes are well-known as chemically, thermally, and photophysically stable dyes and have been used in various optical devices and applications. Nevertheless, the power conversion efficiency remained low compared to other organic dyes. The origin of such limited cell performance is the poor electron-donating abilities of the perylenes, which makes it difficult to inject electrons from the excited singlet state of the perylenes to the conduction band of the TiO(2) electrode efficiently. Strongly electron-donating perylene carboxylic acid derivatives with amine substituents at their perylene core have allowed us to increase the power conversion efficiency of up to approximately 7% in perylene-sensitized solar cells. The efficiency of large pi-aromatic molecule-sensitized solar cells could be improved significantly if the dyes with larger red and near-infrared absorption could be developed.
ChemPhysChem | 2014
Seigo Ito; Soichiro Tanaka; Henri Vahlman; Hitoshi Nishino; Kyohei Manabe; Peter Lund
Carbon double bond-free printed solar cells have been fabricated with the structure <F-doped SnO2 (FTO)/dense TiO2/nanocrystalline TiO2/CH3NH3PbI3/Au> and <FTO/dense TiO2/nanocrystalline TiO2/CH3NH3PbI3/CuSCN/Au>, in which CuSCN acts as a hole conductor. The thickness of the CH3NH3PbI3 layer is controlled by a hot air flow during spin coating. The best conversion efficiency (4.86%) is obtained with <FTO/dense TiO2/nanocrystalline TiO2/thin CH3NH3PbI3 (hot-air dried)/CuSCN/Au>. However, a thick CH3NH3PbI3 layer on CuSCN is better for light-exposure stability (100 mWu2009cm(-2) AM 1.5) when not encapsulated. Without the CuSCN coverage, the black CH3NH3PbI3 crystal changes to yellow during the light-exposure stability test, which is due to the transformation of the CH3NH3PbI3 perovskite crystal into hexagonal PbI2.
Chemistry: A European Journal | 2013
Kei Kurotobi; Yuuki Toude; Kyosuke Kawamoto; Yamato Fujimori; Seigo Ito; Pavel Chabera; Villy Sundström; Hiroshi Imahori
A porphyrin π-system has been modulated by enhancing the push-pull character with highly asymmetrical substitution for dye-sensitized solar cells for the first time. Namely, both two diarylamino moieties as a strong electron-donating group and one carboxyphenylethynyl moiety as a strong electron-withdrawing, anchoring group were introduced into the meso-positions of the porphyrin core in a lower symmetrical manner. As a result of the improved light-harvesting property as well as high electron distribution in the anchoring group of LUMO, a push-pull-enhanced, porphyrin-sensitized solar cell exhibited more than 10% power conversion efficiency, which exceeded that of a representative highly efficient porphyrin (i.e., YD2)-sensitized solar cell under optimized conditions. The rational molecular design concept based on highly asymmetric, push-pull substitution will open the possibilities of further improving cell performance in organic solar cells.
Angewandte Chemie | 2015
Tomohiro Higashino; Yamato Fujimori; Ken-ichi Sugiura; Yukihiro Tsuji; Seigo Ito; Hiroshi Imahori
A tropolone group has been employed for the first time as an anchoring group for dye-sensitized solar cells (DSSCs). The DSSC based on a porphyrin, YD2-o-C8T, with a tropolone moiety exhibited a power-conversion efficiency of 7.7u2009%, which is only slightly lower than that observed for a reference porphyrin, YD2-o-C8, with a conventional carboxylic group. More importantly, YD2-o-C8T was found to be superior to YD2-o-C8 with respect to DSSC durability and binding ability to TiO2 . These results unambiguously demonstrate that tropolone is a highly promising dye-anchoring group for DSSCs in terms of device durability as well as photovoltaic performance.
Chemsuschem | 2013
Hironobu Hayashi; Abeda Sultana Touchy; Yuriko Kinjo; Kei Kurotobi; Yuuki Toude; Seigo Ito; Hanna Saarenpää; Helge Lemmetyinen; Hiroshi Imahori
We have prepared a push-pull porphyrin with an electron-donating triarylamino group at the β,β-edge through a fused imidazole group and an electron-withdrawing carboxyquinoxalino anchoring group at the opposite β,β-edge (ZnPQI) and evaluated the effects of the push-pull structure of ZnPQI on optical, electrochemical, and photovoltaic properties. ZnPQI showed red-shifted Soret and Q bands relative to a reference porphyrin with only an electron-withdrawing group (ZnPQ), thus demonstrating the improved light-harvesting property of ZnPQI. The optical HOMO-LUMO gap was consistent with that estimated by DFT calculations. The ZnPQI-sensitized solar cell exhibited a relatively high power conversion efficiency (η) of 6.8u2009%, which is larger than that of the ZnPQ-sensitized solar cell (η=6.3u2009%) under optimized conditions. The short-circuit current and fill factor of the ZnPQI-sensitized solar cell are larger than those of the ZnPQ-sensitized solar cell, whereas the open circuit potential of the ZnPQI-sensitized cell is smaller than that of the ZnPQ-sensitized cell, leading to an overall improved cell performance of ZnPQI. Such fundamental information provides a new tool for the rational molecular design of highly efficient dye-sensitized solar cells based on push-pull porphyrins.
Energy and Environmental Science | 2010
Seigo Ito; Tsubasa Saitou; Hiroshi Imahori; Hideaki Uehara; Naoki Hasegawa
A food pigment (Monascus yellow) extracted from Monascus fermentations (red yeast rice) has been studied as a novel sensitizing dye for dye-sensitized solar cells (DSCs). The photocurrent action spectrum was in agreement with the absorption spectrum of the dye adsorbed on a nanocrystalline-TiO2 electrode. The DSC fabrication process has been optimized in terms of the rinsing solvent used after dye adsorption and the dye-uptake duration. After optimizing nanocrystalline-TiO2 electrodes and pH conditions, the resulting maximal photovoltaic characteristics were an open-circuit voltage of 0.57 V, a short-circuit current of 6.1 mA cm−2, and a fill factor of 0.66, yielding an energy conversion efficiency of 2.3%.
APL Materials | 2014
Govindhasamy Murugadoss; Gai Mizuta; Soichiro Tanaka; Hitoshi Nishino; Tomokazu Umeyama; Hiroshi Imahori; Seigo Ito
In order to analyze the crystal transformation from hexagonal PbI2 to CH3NH3PbI3 by the sequential (two-step) deposition process, perovskite CH3NH3PbI3 layers were deposited on flat and/or porous TiO2 layers. Although the narrower pores using small nanoparticles prohibited the effective transformation, the porous-TiO2 matrix was able to help the crystal transformation of PbI2 to CH3NH3PbI3 by sequential two-step deposition. The resulting PbI2 crystals in porous TiO2 electrodes did not deteriorate the photovoltaic effects. Moreover, it is confirmed that the porous TiO2 electrode had served the function of prohibiting short circuits between working and counter electrodes in perovskite solar cells.
Chemsuschem | 2016
Ajay K. Baranwal; Shusaku Kanaya; T. A. Nirmal Peiris; Gai Mizuta; Tomoya Nishina; Hiroyuki Kanda; Tsutomu Miyasaka; Hiroshi Segawa; Seigo Ito
Many efforts have been made towards improving perovskite (PVK) solar cell stability, but their thermal stability, particularly at 85u2009°C (IEC 61646 climate chamber tests), remains a challenge. Outdoors, the installed solar cell temperature can reach up to 85u2009°C, especially in desert regions, providing sufficient motivation to study the effect of temperature stress at or above this temperature (e.g., 100u2009°C) to confirm the commercial viability of PVK solar cells for industrial companies. In this work, a three-layer printable HTM-free CH3 NH3 PbI3 PVK solar cell with a mesoporous carbon back contact and UV-curable sealant was fabricated and tested for thermal stability over 1500u2005h at 100u2009°C. Interestingly, the position of the UV-curing glue was found to drastically affect the device stability. The side-sealed cells show high PCE stability and represent a large step toward commercialization of next generation organic-inorganic lead halide PVK solar cells.
Japanese Journal of Applied Physics | 2015
Govindhasamy Murugadoss; Soichiro Tanaka; Gai Mizuta; Shusaku Kanaya; Hitoshi Nishino; Tomokazu Umeyama; Hiroshi Imahori; Seigo Ito
We have prepared perovskite [CH3NH3PbI3 (MALI), CH3NH3PbBr3 (MALB), NH2CH=NH2PbI3 (FALI), and NH2CH=NH2PbBr3 (FALB)] thin films by a one-step process on glass/TiO2 and glass/Al2O3 substrates and studied the stability of the perovskite under UV/visible light radiation up to 24 h at 1.5AM in air. After irradiation, the films were characterized by UV–vis absorption and X-ray diffraction measurements. In addition, photovoltaic performance characteristics in air were studied using different perovskites before (0 h) and after 24 h irradiation. The results revealed that Al2O3 protected the perovskite crystal from degradation. However, the perovskites were unstable except for NH2CH=NH2PbI3 under the same conditions using a TiO2 scaffold layer.
Chemsuschem | 2011
Hiroshi Imahori; Hiroaki Iijima; Hironobu Hayashi; Yuuki Toude; Tomokazu Umeyama; Yoshihiro Matano; Seigo Ito
5,10,15,20-Tetrakis(2,4,6-trimethylphenyl)-6-carboxylquinoxalino[2,3-b]quinoxalino[12,13-b]porphyrinatozinc(II) (ZnPBQ) is synthesized to evaluate the effects of π elongation of quinoxaline-fused porphyrins on the optical, electrochemical, and photovoltaic properties. ZnPBQ showed an intensified Soret band as well as red-shifted Soret and Q bands relative to 5,10,15,20-tetrakis(2,4,6-trimethylphenyl)-6-carboxylquinoxalino[2,3-b]porphyrinatozinc(II) (ZnPQ), demonstrating the improved light-harvesting property of ZnPBQ. The optical and electrochemical HOMO-LUMO gaps were consistent with those estimated by DFT calculations. The photovoltaic properties were compared under optimized conditions, in which a sealed device structure with TiCl(4) -treated, TiO(2) double layers was used. The ZnPBQ cell exhibited a relatively high power conversion efficiency (η) of 4.7%, which was smaller than that of the ZnPQ cell (η=6.3%). The weaker electronic coupling between the LUMO of ZnPBQ and conduction band (CB) of TiO(2) or more tilted geometry of ZnPBQ on the TiO(2) surface may result in the low electron injection/charge collection efficiency as well as the low incident photon-to-current efficiency (IPCE) for the ZnPBQ cell (maximum IPCE=56%) relative to the ZnPQ cell (maximum IPCE=75%), leading to the lower η value of the ZnPBQ cell than that of the ZnPQ cell. In addition, the open-circuit potential of the ZnPBQ cell also slightly decreased with the effect of charge recombination from the electrons injected into the CB of TiO(2) to I(3)(-).