Seiji Hitaoka
University of Tokushima
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Seiji Hitaoka.
Journal of Chemical Information and Modeling | 2010
Seiji Hitaoka; Masataka Harada; Tatsusada Yoshida; Hiroshi Chuman
We carried out full ab initio molecular orbital calculations on complexes between neuraminidase-1 (N1-NA) in the influenza A virus and a series of eight sialic acid analogues including oseltamivir (Tamiflu) in order to quantitatively examine the binding mechanism and variation in the inhibitory potency at the atomic and electronic levels. FMO-MP2-IFIE (interfragment interaction energy at the MP2 level of ab initio fragment molecular orbital calculations) analyses quantitatively revealed (1) that the complex formation is driven by strong electrostatic interactions of charged functional groups in the analogues with ionized amino acid residues and water molecules in the active site of N1-NA, and (2) that the variation in the inhibitory potency among the eight analogues is determined by the dispersion and/or hydrophobic interaction energies of the 3-pentyl ether and charged amino moieties in oseltamivir with certain residues and water molecules in the active site of N1-NA. The current results will be useful for the development of new antiinfluenza drugs with high potency against various subtypes of wild-type and drug-resistant NAs.
Journal of Chemical Information and Modeling | 2011
Seiji Hitaoka; Hiroshi Matoba; Masataka Harada; Tatsusada Yoshida; Daisuke Tsuji; Takatsugu Hirokawa; Kohji Itoh; Hiroshi Chuman
We carried out full ab initio fragment molecular orbital (FMO) calculations for complexes comprising human neuraminidase-2 (hNEU2) and sialic acid analogues including anti-influenza drugs zanamivir (Relenza) and oseltamivir (Tamiflu) in order to examine the variation in the observed inhibitory activity toward hNEU2 at the atomic and electronic levels. We recently proposed the LERE (linear expression by representative energy terms)-QSAR (quantitative structure-activity relationship) procedure. LERE-QSAR analysis quantitatively revealed that the complex formation is driven by hydrogen-bonding and electrostatic interaction of hNEU2 with sialic acid analogues. The most potent inhibitory activity, that of zanamivir, is attributable to the strong electrostatic interaction of a positively charged guanidino group in zanamivir with negatively charged amino acid residues in hNEU2. After we confirmed that the variation in the observed inhibitory activity among sialic acid analogues is excellently reproducible with the LERE-QSAR equation, we examined the reason for the remarkable difference between the inhibitory potencies of oseltamivir as to hNEU2 and influenza A virus neuraminidase-1 (N1-NA). Several amino acid residues in close contact with a positively charged amino group in oseltamivir are different between hNEU2 and N1-NA. FMO-IFIE (interfragment interaction energy) analysis showed that the difference in amino acid residues causes a remarkably large difference between the overall interaction energies of oseltamivir with hNEU2 and N1-NA. The current results will be useful for the development of new anti-influenza drugs with high selectivity and without the risk of adverse side effects.
Journal of Physical Chemistry B | 2012
Tatsusada Yoshida; Seiji Hitaoka; Akira Mashima; Takuya Sugimoto; Hiroshi Matoba; Hiroshi Chuman
We previously proposed a novel QSAR (quantitative structure-activity relationship) procedure called LERE (linear expression by representative energy terms)-QSAR involving molecular calculations such as an ab initio fragment molecular orbital ones. In the present work, we applied LERE-QSAR to complex formation of matrix metalloproteinase-9 (MMP-9) with a series of substituted biphenylsulfonamides. The results shows that the overall free-energy change accompanying complex formation is due to predominantly the contribution from the electrostatic interaction with the zinc atom in the active site of MMP-9. Carbonic anhydrase (CA) belongs to the zinc-containing protease family. In contrast to the current case of MMP-9, the overall free-energy change during complex formation of CA with a series of benzenesulfonamides is due to the contributions from the solvation and dissociation free-energy changes, as previously reported. Comparison of the two sets of results indicates quantitative differences in the relative contributions of free-energy components to the overall free-energy change between the two data sets, corresponding with those in the respective classical QSAR equations. The LERE-QSAR procedure was demonstrated to quantitatively reveal differences in the binding mechanisms between the two cases involving similar but different zinc-containing proteins at the electronic and atomic levels.
Journal of Biological Chemistry | 2016
Wataru Sato; Seiji Hitaoka; Kaoru Inoue; Mizue Imai; Tomohide Saio; Takeshi Uchida; Kyoko Shinzawa-Itoh; Shinya Yoshikawa; Kazunari Yoshizawa; Koichiro Ishimori
Based on the mutational effects on the steady-state kinetics of the electron transfer reaction and our NMR analysis of the interaction site (Sakamoto, K., Kamiya, M., Imai, M., Shinzawa-Itoh, K., Uchida, T., Kawano, K., Yoshikawa, S., and Ishimori, K. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 12271–12276), we determined the structure of the electron transfer complex between cytochrome c (Cyt c) and cytochrome c oxidase (CcO) under turnover conditions and energetically characterized the interactions essential for complex formation. The complex structures predicted by the protein docking simulation were computationally selected and validated by the experimental kinetic data for mutant Cyt c in the electron transfer reaction to CcO. The interaction analysis using the selected Cyt c-CcO complex structure revealed the electrostatic and hydrophobic contributions of each amino acid residue to the free energy required for complex formation. Several charged residues showed large unfavorable (desolvation) electrostatic interactions that were almost cancelled out by large favorable (Columbic) electrostatic interactions but resulted in the destabilization of the complex. The residual destabilizing free energy is compensated by the van der Waals interactions mediated by hydrophobic amino acid residues to give the stabilized complex. Thus, hydrophobic interactions are the primary factors that promote complex formation between Cyt c and CcO under turnover conditions, whereas the change in the electrostatic destabilization free energy provides the variance of the binding free energy in the mutants. The distribution of favorable and unfavorable electrostatic interactions in the interaction site determines the orientation of the binding of Cyt c on CcO.
Biochimica et Biophysica Acta | 2009
Tatsusada Yoshida; Yoshito Kadota; Seiji Hitaoka; Eri Kori; Yasushi Horikawa; Masahiro Taguchi; Daisuke Tsuji; Takatsugu Hirokawa; Hiroshi Chuman; Kohji Itoh
Human lysosomal protective protein/cathepsin A (CathA) is a multifunctional protein that exhibits not only protective functions as to lysosomal glycosidases, i.e., neuraminidase 1 (NEU1) and beta-galactosidase (GLB), but also its own serine carboxypeptidase activity, and exhibits conserved structural similarity to yeast and wheat homologs (CPY and CPW). Our previous study revealed that the R344 (Arg344) residue in CathA could contribute to the binding and recognition of the serine peptidase inhibitor chymostatin. We examined here the effects of substitution of R344 with other amino acids, including A, D, E, G, I, K, M, N, P, Q, S, and V, denoted as R344X, including the wild-type CathA, on expression of CathA activity and intracellular processing. Among the mutant gene products, the 54-kDa precursor/zymogen with the R344D substitution was not processed to the 32/20-kDa mature form with CathA activity in a fibroblastic cell line derived from a galactosialidosis patient. Molecular dynamics (MD) simulations on the total twelve R344X mutants and the wild-type revealed that only R344D takes on a significantly different conformation of S293-D295 in the excision peptide (M285-R298) compared to the other R344X mutants; the side chains of S293 and D295 in R344D are exposed on the molecular surface, although those in the other twelve R344X mutants are buried inside the protein. The results of the current work strongly suggest that the distinct conformational change of the S293-D295 region in the R344D protein causes the processing defect of the 54-kDa precursor of the R344D mutant gene product in cultured cells.
Biochemistry and biophysics reports | 2015
M. Motiur Rahman; Takatsugu Hirokawa; Daisuke Tsuji; Jun Tsukimoto; Seiji Hitaoka; Tatsusada Yoshida; Hiroshi Chuman; Kohji Itoh
Human cytosolic sialidase (Neuraminidase 2, NEU2) catalyzes the removal of terminal sialic acid residues from glycoconjugates. The effect of siastatin B, known as a sialidase inhibitor, has not been evaluated toward human NEU2 yet. We studied the regulation of NEU2 activity by siastatin B in vitro and predicted the interaction in silico. Inhibitory and stabilizing effects of siastatin B were analyzed in comparison with DANA (2-deoxy-2,3-dehydro-N-acetylneuraminic acid) toward 4-umbelliferyl N-acetylneuraminic acid (4-MU-NANA)- and α2,3-sialyllactose-degrading activities of recombinant NEU2 produced by E. coli GST-fusion gene expression. Siastatin B exhibited to have higher competitive inhibitory activity toward NEU2 than DANA at pH 4.0. We also revealed the stabilizing effect of siastatin B toward NEU2 activity at acidic pH. Docking model was constructed on the basis of the crystal structure of NEU2/DANA complex (PDB code: 1VCU). Molecular docking predicted that electrostatic neutralization of E111 and E218 residues of the active pocket should not prevent siastatin B from binding at pH 4.0. The imino group (1NH) of siastatin B can also interact with D46, neutralized at pH 4.0. Siastatin B was suggested to have higher affinity to the active pocket of NEU2 than DANA, although it has no C7–9 fragment corresponding to that of DANA. We demonstrated here the pH-dependent affinity of siastatin B toward NEU2 to exhibit potent inhibitory and stabilizing activities. Molecular interaction between siastatin B and NEU2 will be utilized to develop specific inhibitors and stabilizers (chemical chaperones) not only for NEU2 but also the other human sialidases, including NEU1, NEU3 and NEU4, based on homology modeling.
Journal of Chemical Information and Modeling | 2010
Tatsusada Yoshida; Yohei Munei; Seiji Hitaoka; Hiroshi Chuman
Journal of Organic Chemistry | 2011
Tatsusada Yoshida; Koji Hirozumi; Masataka Harada; Seiji Hitaoka; Hiroshi Chuman
Organic and Biomolecular Chemistry | 2015
Seiji Hitaoka; Hiroshi Chuman; Kazunari Yoshizawa
Bioorganic & Medicinal Chemistry Letters | 2012
Tatsusada Yoshida; Miho Shimizu; Masataka Harada; Seiji Hitaoka; Hiroshi Chuman
Collaboration
Dive into the Seiji Hitaoka's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs