Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seiko Shimamoto is active.

Publication


Featured researches published by Seiko Shimamoto.


Journal of Biological Chemistry | 2002

Clostridium perfringens epsilon-toxin forms a heptameric pore within the detergent-insoluble microdomains of MDCK cells and rat synaptosomes

Shigeru Miyata; Junzaburo Minami; Eiji Tamai; Osamu Matsushita; Seiko Shimamoto; Akinobu Okabe

Clostridium perfringens ε-toxin, which is responsible for enterotoxaemia in ungulates, forms a heptamer in rat synaptosomal and Madin-Darby canine kidney (MDCK) cell membranes, leading to membrane permealization. Thus, the toxin may target the detergent-resistant membrane domains (DRMs) of these membranes, in analogy to aerolysin, a heptameric pore-forming toxin that associates with DRMs. To test this idea, we examined the distribution of radiolabeled ε-toxin in DRM and detergent-soluble membrane fractions of MDCK cells and rat synaptosomal membranes. When MDCK cells and synaptosomal membranes were incubated with the toxin and then fractionated by cold Triton X-100 extraction and flotation on sucrose gradients, the heptameric toxin was detected almost exclusively in DRMs. The results of a toxin overlay assay revealed that the toxin preferentially bound to and heptamerized in the isolated DRMs. Furthermore, cholesterol depletion by methyl-β-cyclodextrin abrogated their association and lowered the cytotoxicity of the toxin toward MDCK cells. When ε-protoxin, an inactive precursor able to bind to but unable to heptamerize in the membrane, was incubated with MDCK cell membranes, it was detected mainly in their DRMs. These results suggest that the toxin is concentrated and induced to heptamerize on binding to a putative receptor located preferentially in DRMs, with all steps from initial binding through pore formation completed within the same DRMs.


Journal of Biological Chemistry | 2012

S100 Proteins Modulate Protein Phosphatase 5 Function A LINK BETWEEN CA2+ SIGNAL TRANSDUCTION AND PROTEIN DEPHOSPHORYLATION

Fuminori Yamaguchi; Yoshinori Umeda; Seiko Shimamoto; Mitsumasa Tsuchiya; Hiroshi Tokumitsu; Masaaki Tokuda; Ryoji Kobayashi

Background: The regulation mechanism of PP5 activity remains poorly understood. Results: Ca2+/S100 proteins bind the TPR domain of PP5 and lead to activation of its enzyme activity and dissociation of the PP5-client protein interactions. Conclusion: Ca2+/S100 proteins are novel PP5 regulators. Significance: This finding provides a novel Ca2+ signaling pathway via S100 proteins. PP5 is a unique member of serine/threonine phosphatases comprising a regulatory tetratricopeptide repeat (TPR) domain and functions in signaling pathways that control many cellular responses. We reported previously that Ca2+/S100 proteins directly associate with several TPR-containing proteins and lead to dissociate the interactions of TPR proteins with their client proteins. Here, we identified protein phosphatase 5 (PP5) as a novel target of S100 proteins. In vitro binding studies demonstrated that S100A1, S100A2, S100A6, and S100B proteins specifically interact with PP5-TPR and inhibited the PP5-Hsp90 interaction. In addition, the S100 proteins activate PP5 by using a synthetic phosphopeptide and a physiological protein substrate, Tau. Overexpression of S100A1 in COS-7 cells induced dephosphorylation of Tau. However, S100A1 and permanently active S100P inhibited the apoptosis signal-regulating kinase 1 (ASK1) and PP5 interaction, resulting the inhibition of dephosphorylation of phospho-ASK1 by PP5. The association of the S100 proteins with PP5 provides a Ca2+-dependent regulatory mechanism for the phosphorylation status of intracellular proteins through the regulation of PP5 enzymatic activity or PP5-client protein interaction.


Journal of Biological Chemistry | 2008

Interactions of S100A2 and S100A6 with the tetratricopeptide repeat proteins, Hsp90/Hsp70-organizing protein and kinesin-light chain

Seiko Shimamoto; Maki Takata; Masaaki Tokuda; Fumikazu Oohira; Hiroshi Tokumitsu; Ryoji Kobayashi

S100A2 and S100A6 interact with several target proteins in a Ca2+-regulated manner. However, the exact intracellular roles of the S100 proteins are unclear. In this study we identified Hsp70/Hsp90-organizing protein (Hop) and kinesin light chain (KLC) as novel targets of S100A2 and S100A6. Hop directly associates with Hsp70 and Hsp90 through the tetratricopeptide (TPR) domains and regulates Hop-Hsp70 and Hop-Hsp90 complex formation. We have found that S100A2 and S100A6 bind to the TPR domain of Hop, resulting in inhibition of the Hop-Hsp70 and Hop-Hsp90 interactions in vitro. Although endogenous Hsp70 and Hsp90 interact with Hop in resting Cos-7 cells, but not with S100A6, stimulation of these cells with ionomycin caused a Hop-S100A6 interaction, resulting in the dissociation of Hsp70 and Hsp90 from Hop. Similarly, glutathione S-transferase pulldown and co-immunoprecipitation experiments revealed that S100A6 binds to the TPR domain of KLC, resulting in inhibition of the KLC-c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP-1) interaction in vitro. The transiently expressed JIP-1 interacts with KLC in resting Cos-7 cells but not with S100A6. Stimulation of these cells with ionomycin also caused a KLC-S100A6 interaction, resulting in dissociation of JIP-1 from KLC. These results strongly suggest that the S100 proteins modulate Hsp70-Hop-Hsp90 multichaperone complex formation and KLC-cargo interaction via Ca2+-dependent S100 protein-TPR protein complex formation in vivo as well as in vitro. Moreover, we have shown that S100A2 and S100A6 interact with another TPR protein Tom70 and regulate the Tom70-ligand interaction in vitro. Thus, our findings suggest a new intracellular Ca2+-signaling pathway via S100 proteins-TPR motif interactions.


FEBS Letters | 2010

S100 proteins regulate the interaction of Hsp90 with Cyclophilin 40 and FKBP52 through their tetratricopeptide repeats.

Seiko Shimamoto; Yasuo Kubota; Hiroshi Tokumitsu; Ryoji Kobayashi

MINT‐7710295: Cyp40 (uniprotkb:P26882) physically interacts (MI:0914) with Hsp90 (uniprotkb:P07900) and S100A1 (uniprotkb:P35467) by anti tag coimmunoprecipitation (MI:0007)


Journal of Biological Chemistry | 2013

Ca2+/S100 Proteins Act as Upstream Regulators of the Chaperone-associated Ubiquitin Ligase CHIP (C Terminus of Hsc70-interacting Protein)

Seiko Shimamoto; Yasuo Kubota; Fuminori Yamaguchi; Hiroshi Tokumitsu; Ryoji Kobayashi

Background: CHIP is a U-box E3 ubiquitin ligase that facilitates the proteasomal degradation of many client proteins. Results: Ca2+/S100 proteins directly interact with CHIP and suppress the ubiquitination and degradation of the client proteins. Conclusion: We have identified S100 proteins as novel Ca2+-dependent regulators of the CHIP-proteasome pathway. Significance: This is the first indication that S100 proteins form a link between Ca2+ signal transduction and the CHIP-proteasome pathway. The U-box E3 ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein) binds Hsp90 and/or Hsp70 via its tetratricopeptide repeat (TPR), facilitating ubiquitination of the chaperone-bound client proteins. Mechanisms that regulate the activity of CHIP are, at present, poorly understood. We previously reported that Ca2+/S100 proteins directly associate with the TPR proteins, such as Hsp70/Hsp90-organizing protein (Hop), kinesin light chain, Tom70, FKBP52, CyP40, and protein phosphatase 5 (PP5), leading to the dissociation of the interactions of the TPR proteins with their target proteins. Therefore, we have hypothesized that Ca2+/S100 proteins can interact with CHIP and regulate its function. GST pulldown assays indicated that Ca2+/S100A2 and S100P bind to the TPR domain and lead to interference with the interactions of CHIP with Hsp70, Hsp90, HSF1, and Smad1. In vitro ubiquitination assays indicated that Ca2+/S100A2 and S100P are efficient and specific inhibitors of CHIP-mediated ubiquitination of Hsp70, Hsp90, HSF1, and Smad1. Overexpression of S100A2 and S100P suppressed CHIP-chaperone complex-dependent mutant p53 ubiquitination and degradation in Hep3B cells. The association of the S100 proteins with CHIP provides a Ca2+-dependent regulatory mechanism for the ubiquitination and degradation of intracellular proteins by the CHIP-proteasome pathway.


Biochemical Journal | 2014

Ca2+/S100 proteins inhibit the interaction of FKBP38 with Bcl-2 and Hsp90

Seiko Shimamoto; Mitsumasa Tsuchiya; Fuminori Yamaguchi; Yasuo Kubota; Hiroshi Tokumitsu; Ryoji Kobayashi

FKBP38 (FK506-binding protein 38), a membrane-anchored TPR (tetratricopeptide repeat)-containing immunophilin, regulates signalling pathways such as cell survival, apoptosis, proliferation and metastasis. However, the mechanisms that regulate the activity of FKBP38 are, at present, poorly understood. We previously reported that Ca2+/S100 proteins directly associate with the TPR proteins, such as Hop [Hsp70 (heat-shock protein of 70 kDa)/Hsp90-organizing protein], kinesin-light chain, Tom70 (translocase of outer mitochondrial membrane 70), FKBP52, CyP40 (cyclophilin 40), CHIP (C-terminus of Hsc70-interacting protein) and PP5 (protein phosphatase 5), leading to the dissociation of the interactions of the TPR proteins with their target proteins. Therefore we have hypothesized that Ca2+/S100 proteins can interact with FKBP38 and regulate its function. In vitro binding studies demonstrated that S100A1, S100A2, S100A6, S100B and S100P specifically interact with FKBP38 and inhibit the interaction of FKBP38 with Bcl-2 and Hsp90. Overexpression of permanently active S100P in Huh-7 cells inhibited the interaction of FKBP38 with Bcl-2, resulting in the suppression of Bcl-2 stability. The association of the S100 proteins with FKBP38 provides a Ca2+-dependent regulatory mechanism of the FKBP38-mediated signalling pathways.


FEBS Letters | 2010

Regulation of nuclear localization signal-importin α interaction by Ca2+/S100A6.

Maki Takata; Seiko Shimamoto; Fuminori Yamaguchi; Masaaki Tokuda; Hiroshi Tokumitsu; Ryoji Kobayashi

MINT‐8044951: Importin alpha (uniprotkb:P52292) and S100A2 (uniprotkb:P29034) bind (MI:0407) by electrophoretic mobility supershift assay (MI:0412)


Applied Biochemistry and Biotechnology | 2014

Suramin is a Novel Activator of PP5 and Biphasically Modulates S100-Activated PP5 Activity

Fuminori Yamaguchi; Sho Yamamura; Seiko Shimamoto; Hiroshi Tokumitsu; Masaaki Tokuda; Ryoji Kobayashi

Suramin is an activator of ryanodine receptors and competitively binds to the calmodulin-binding site. In addition, S100A1 and calmodulin compete for the same binding site on ryanodine receptors. We therefore studied the effects of suramin on protein phosphatase 5 (PP5) and S100-activated PP5. In the absence of S100 proteins, suramin bound to the tetratricopeptide repeat (TPR) domain of PP5 and activated the enzyme in a dose-dependent manner. In the presence of S100A2/Ca2+, lower concentrations of suramin dose-dependently inhibited PP5 activity as an S100 antagonist, whereas higher concentrations of suramin reactivated PP5. Although the C-terminal fragment of heat shock protein 90 (HspC90) also weakly activated PP5, the binding site of suramin and HspC90 may be different, and addition of suramin showed no clear effect on the phosphatase activity of PP5. Similar biphasic effects of suramin were observed with S100A1-, S100B- or S100P-activated PP5. However, the inhibitory effects of lower concentrations of suramin on S100A6-activated PP5 are weak and high concentrations of suramin further activated PP5. SPR and the cross-linking study showed inhibition of the interaction between S100 protein and PP5 by suramin. Our results revealed that suramin is a novel PP5 activator and modulates S100-activated PP5 activity by competitively binding to the TPR domain.


Tohoku Journal of Experimental Medicine | 2016

Oxidative Stress Impairs the Stimulatory Effect of S100 Proteins on Protein Phosphatase 5 Activity

Fuminori Yamaguchi; Mitsumasa Tsuchiya; Seiko Shimamoto; Tomohito Fujimoto; Hiroshi Tokumitsu; Masaaki Tokuda; Ryoji Kobayashi

Oxidative stress is the consequence of an imbalance between the production of harmful reactive oxygen species and the cellular antioxidant system for neutralization, and it activates multiple intracellular signaling pathways, including apoptosis signal-regulating kinase 1 (ASK1). Protein phosphatase 5 (PP5) is a serine/threonine phosphatase involved in oxidative stress responses. Previously, we reported that S100 proteins activate PP5 in a calcium-dependent manner. S100 proteins belong to a family of small EF-hand calcium-binding proteins involved in many processes such as cell proliferation, differentiation, apoptosis, and inflammation. Therefore, we investigated the effects of oxidative stress on S100 proteins, their interaction with PP5, and PP5 enzyme activity. Recombinant S100A2 was easily air-oxidized or Cu-oxidized, and oxidized S100A2 formed cross-linked dimers and higher molecular-mass complexes. The binding of oxidized S100A2 to PP5 was reduced, resulting in decreased PP5 activation in vitro. Oxidation also impaired S100A1, S100A6, S100B, and S100P to activate PP5, although the low dose of oxidized S100 proteins still activated PP5. Hydrogen peroxide (H2O2) induced S100A2 oxidation in human keratinocytes (HaCaT) and human hepatocellular carcinoma (Huh-7) cells. Furthermore, H2O2 reduced the binding of S100A2 to PP5 and decreased PP5 activation in HaCaT and Huh-7 cells. Importantly, even the low dose of S100A2 achieved by knocking down increased dephosphorylation of ASK1 and reduced caspase 3/7 activity in Huh-7 cells treated with H2O2. These results indicate that oxidative stress impairs the ability of S100 proteins to bind and activate PP5, which in turn modulates the ASK1-mediated signaling cascades involved in apoptosis.


Analyst | 2012

Size-exclusion SPR sensor chip: application to detection of aggregation and disaggregation of biological particles

Kyohei Terao; Kazunori Shimizu; Nobumitsu Miyanishi; Seiko Shimamoto; Takaaki Suzuki; Hidekuni Takao; Fumikazu Oohira

We propose a novel surface plasmon resonance (SPR) sensor chip with a microfabricated slit array. The microslit excludes micrometre-size objects larger than its slit size from the SPR sensing area, so that it functions as an in situ filter. We demonstrated the sensing of microparticles of different diameters using the chip, and the results show a successful size-exclusion effect. As a demonstration of the biological application, we performed the detection of aggregation and disaggregation of biological particles using sugar-chain-immobilized gold nanoparticles as a test sample.

Collaboration


Dive into the Seiko Shimamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge