Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seishi Maeda is active.

Publication


Featured researches published by Seishi Maeda.


Neuroscience Research | 2001

Subnuclear distribution of afferents from the oral, pharyngeal and laryngeal regions in the nucleus tractus solitarii of the rat: a study using transganglionic transport of cholera toxin.

Tetsu Hayakawa; Akinori Takanaga; Seishi Maeda; Makoto Seki; Yukio Yajima

The central distributions of afferents from the oral cavity, the pharynx, the larynx and the esophagus to the nucleus tractus solitarii (NTS) were examined by using transganglionic anterograde transport of the cholera toxin B subunit (CT-b). Injections of CT-b into the body of the tongue and the hard palate resulted in heavy labeling of the lateral subnucleus (l-NTS) of the NTS rostral to the area postrema. Injection into the root of the tongue resulted in heavy labeling of the l-NTS, the dorsal half of the medial (m-NTS), the intermediate (im-NTS) and the interstitial (is-NTS) subnuclei rostral to the area postrema. Injections into the soft palate and the pharynx resulted in a similar labeling pattern in the is-NTS, im-NTS and m-NTS to that in the case of the root of the tongue, but this labeling extended rostrocaudally. Heavy labeling of the medial aspect of the l-NTS was found in the case of the soft palate, but the labeling was sparse in the case of the pharynx. Moderate labeling was also found in the commissural subnucleus (co-NTS). Injection into the larynx resulted in labeling of the is-NTS throughout the NTS, and of the rostral half of im-NTS. Injection into the esophagus resulted in heavy labeling of the central subnucleus, and moderate labeling of the co-NTS and the caudal half of im-NTS. A few but consistent anterogradely labeled terminals were found to appose retrogradely labeled small neurons in the rostral tip of the dorsal motor nucleus of vagus in the cases of injections into the root of the tongue, the soft palate, the pharynx, and the larynx. These results have characterized the viscerotopic representation of afferent projections from the oral and the cervical visceral organs to the subnuclei of the NTS.


Autonomic Neuroscience: Basic and Clinical | 2003

Immunohistochemical characterization of cardiac vagal preganglionic neurons in the rat.

Akinori Takanaga; Tetsu Hayakawa; Koichi Tanaka; Keigo Kawabata; Seishi Maeda; Makoto Seki

Cardiac vagal preganglionic neurons (CVN) control cardiac activity by negative chronotropic, dromotropic and inotropic effects. We attempted to characterize the distribution and neuronal properties of the CVN by using double labeling with the retrograde tracer cholera toxin B subunit (CTb) and immunohistochemistry for choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP) or nitric oxide synthase (NOS). Injection of CTb into the sinoatrial ganglia resulted in many retrogradely labeled of neurons in the dorsal motor nucleus of the vagus (DMV), the compact (AmC), semicompact (AmS), loose (AmL), external (AmE) formations of the nucleus ambiguus, and the intermediate zone (IZ) between DMV and the nucleus ambiguus. Almost all CTb-labeled neurons showed ChAT immunoreactivity in the DMV, AmC, AmS, AmL and IZ, but most of the CTb-labeled neurons showed no ChAT immunoreactivity in the AmE. Most of the CTb-labeled neurons were double-labeled with CGRP immunoreactivity in the AmC, AmS and AmL, but a few double-labeled neurons were found in the DMV, IZ and AmE. A few CTb-labeled neurons were double-labeled with NOS immunoreactivity only in the DMV. No TH-immunoreactive neurons were found among the CVN. These results indicate that there are four kinds of neurons among the CVN: non-cholinergic CVN in the AmE, cholinergic and CGRP-containing CVN in the AmC, AmS and AmL, and cholinergic or cholinergic and NOS-containing CVN in the DMV.


PLOS ONE | 2011

Cyclical and patch-like GDNF distribution along the basal surface of Sertoli cells in mouse and hamster testes.

Takeshi Sato; Yoshimi Aiyama; Mayuko Ishii-Inagaki; Kenshiro Hara; Naoki Tsunekawa; Kyoko Harikae; Mami Uemura-Kamata; Mai Shinomura; Xiao Bo Zhu; Seishi Maeda; Sachi Kuwahara-Otani; Akihiko Kudo; Hayato Kawakami; Masami Kanai-Azuma; Michio Fujiwara; Yoichi Miyamae; Shosei Yoshida; Makoto Seki; Masamichi Kurohmaru; Yoshiakira Kanai

Background and Aims In mammalian spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) is one of the major Sertoli cell-derived factors which regulates the maintenance of undifferentiated spermatogonia including spermatogonial stem cells (SSCs) through GDNF family receptor α1 (GFRα1). It remains unclear as to when, where and how GDNF molecules are produced and exposed to the GFRα1-positive spermatogonia in vivo. Methodology and Principal Findings Here we show the cyclical and patch-like distribution of immunoreactive GDNF-positive signals and their close co-localization with a subpopulation of GFRα1-positive spermatogonia along the basal surface of Sertoli cells in mice and hamsters. Anti-GDNF section immunostaining revealed that GDNF-positive signals are mainly cytoplasmic and observed specifically in the Sertoli cells in a species-specific as well as a seminiferous cycle- and spermatogenic activity-dependent manner. In contrast to the ubiquitous GDNF signals in mouse testes, high levels of its signals were cyclically observed in hamster testes prior to spermiation. Whole-mount anti-GDNF staining of the seminiferous tubules successfully visualized the cyclical and patch-like extracellular distribution of GDNF-positive granular deposits along the basal surface of Sertoli cells in both species. Double-staining of GDNF and GFRα1 demonstrated the close co-localization of GDNF deposits and a subpopulation of GFRα1-positive spermatogonia. In both species, GFRα1-positive cells showed a slender bipolar shape as well as a tendency for increased cell numbers in the GDNF-enriched area, as compared with those in the GDNF-low/negative area of the seminiferous tubules. Conclusion/Significance Our data provide direct evidence of regionally defined patch-like GDNF-positive signal site in which GFRα1-positive spermatogonia possibly interact with GDNF in the basal compartment of the seminiferous tubules.


Journal of Chemical Neuroanatomy | 2007

Morphological and immunohistochemical characterization of the trigeminal ganglion neurons innervating the cornea and upper eyelid of the rat.

Akiko Nakamura; Tetsu Hayakawa; Sachi Kuwahara; Seishi Maeda; Koichi Tanaka; Makoto Seki; Osamu Mimura

The cornea is sensitive to nociceptive stimuli and receives dense sensory innervations from the trigeminal ganglion, which also innervates the upper eyelid. We investigated the morphological and immunohistochemical characterization of the trigeminal ganglion neurons innervating the cornea and upper eyelid. We injected the retrograde tracer Fluoro-Gold (FG) into the cornea and the retrograde tracer cholera toxin subunit b (CTb) into the upper eyelid of the same animal. Less than 10% of the FG-labeled neurons were also labeled with CTb. The FG-labeled neurons were small (29.6+/-0.6microm), while the CTb-labeled neurons were large (36.1+/-0.5microm). We also characterized the neurons in the trigeminal ganglion with the retrograde tracer FG following its injection into the cornea or the upper eyelid, and immunohistochemical double-labeling with nociception-related neuronal markers, such as calcitonin gene-related peptides (CGRP), transient receptor potentiated vanilloid 1 (TRPV1), and substance P (SP). About 27% of the neurons innervating the cornea were double-labeled with CGRP, about 23% with TRPV1, and about 8% with SP. About 4% of the neurons innervating the upper eyelid were double-labeled for CGRP, about 11% for TRPV1, and 3% for SP. Thus, the percentages of double-labeled neurons for the neurons innervating the cornea were higher than those for the neurons innervating the upper eyelid. These results indicate that the cornea and the upper eyelid receive innervations mainly from different neurons of the trigeminal ganglia. The cornea is innervated by many characteristic sensory neurons containing nociception-related neuronal markers.


Brain Research | 2004

Distribution and ultrastructure of dopaminergic neurons in the dorsal motor nucleus of the vagus projecting to the stomach of the rat.

Tetsu Hayakawa; Akinori Takanaga; Koichi Tanaka; Seishi Maeda; Makoto Seki

Almost all parasympathetic preganglionic motor neurons contain acetylcholine, whereas quite a few motor neurons in the dorsal motor nucleus of the vagus (DMV) contain dopamine. We determined the distribution and ultrastructure of these dopaminergic neurons with double-labeling immunohistochemistry for tyrosine hydroxylase (TH) and the retrograde tracer cholera toxin subunit b (CTb) following its injection into the stomach. A few TH-immunoreactive (TH-ir) neurons were found in the rostral half of the DMV, while a moderate number of these neurons were found in the caudal half. Most of the TH-ir neurons (78.4%) were double-labeled for CTb in the half of the DMV caudal to the area postrema, but only a few TH-ir neurons (5.5%) were double-labeled in the rostral half. About 20% of gastric motor neurons showed TH-immunoreactivity in the caudal half of the DMV, but only 0.3% were TH-ir in the rostral half. In all gastric motor neurons, 8.1% were double-labeled for TH. The ultrastructure of the TH-ir neurons in the caudal DMV was determined with immuno-gold-silver labeling. The TH-ir neurons were small (20.4 x 12.4 microm), round or oval, and contained numerous mitochondria, many free ribosomes, several Golgi apparatuses, a round nucleus and a few Nissl bodies. The average number of axosomatic terminals per section was 4.0. More than half of them contained round synaptic vesicles and made asymmetric synaptic contacts (Grays type I). Most of the axodendritic terminals contacting TH-ir dendrites were Grays type I (90%), but a few contained pleomorphic vesicles and made symmetric synaptic contacts (Grays type II).


Autonomic Neuroscience: Basic and Clinical | 2003

Induction of Fos protein in neurons in the medulla oblongata after motion- and X-irradiation-induced emesis in musk shrews (Suncus murinus)

Hisao Ito; Mitsuru Nishibayashi; Keigo Kawabata; Seishi Maeda; Makoto Seki; Susumu Ebukuro

To clarify the anatomical location of medullary neurons associated with vomiting, the musk shrew (Suncus murinus), a small animal used as a model for emesis, was exposed to various emetic stimuli and patterns of neuronal excitation were investigated by Fos immunohistochemistry. In motion experiments, musk shrews were shaken for 30 min on a tabletop shaker (displacement=25 mm and frequency=1.2 Hz). Ten of fifteen animals vomited frequently (Mo-FV group); the other five animals did not vomit (Mo-NV group). In radiation experiments, X-ray irradiation (10 Gy) of the whole body caused frequent vomiting in all of seven experimental animals (Ra-FV group). In the Mo-FV group, many Fos-immunoreactive (Fos-ir) neurons were detected in the nucleus of the solitary tract (NTS) and the reticular formation. The distribution pattern of Fos-ir neurons in the Mo-NV group was similar to that in the Mo-FV group, but the Mo-NV group had significantly fewer positive neurons in the NTS and the reticular formation around the nucleus ambiguus. In the Ra-FV group, numerous Fos-ir neurons were observed in the area postrema, an area containing no positive neurons in the motion-stimulated animals. The number of Fos-ir neurons in the NTS of the Ra-FV group was not statistically different from that of the Mo-NV group. In the Mo-FV and Ra-FV groups, Fos-ir neurons were clustered in the reticular formation at the dorsal-dorsomedial edge of the nucleus ambiguus at the level of the rostral medulla, while few such clusters were observed in the Mo-NV group. These neurons may play a role in the regulation of the vomiting response.


Journal of Chemical Neuroanatomy | 2010

Calcitonin gene-related peptide immunoreactive neurons innervating the soft palate, the root of tongue, and the pharynx in the superior glossopharyngeal ganglion of the rat

Tetsu Hayakawa; Sachi Kuwahara; Seishi Maeda; Koichi Tanaka; Makoto Seki

We have examined whether calcitonin gene-related peptide immunoreactive (CGRP-ir) neurons in the glossopharyngeal ganglia innervate the soft palate, the root of tongue, and the pharynx of the rat. Immunohistochemical observations revealed that numerous CGRP-ir neurons are located in the superior glossopharyngeal ganglion located ventrolateral to the medulla oblongata in the cranial cavity, and that CGRP-ir neurons are also located in the inferior glossopharyngeal ganglion at the jugular foramen. When Fluorogold was injected into the soft palate, the root of tongue, or the pharyngeal constrictor muscles, many retrogradely Fluorogold-labeled neurons were found in the superior glossopharyngeal ganglion and the nodose ganglion, and several Fluorogold-labeled neurons were found in the inferior glossopharyngeal ganglion. Double labeling with immunohistochemistry for CGRP and Fluorogold showed that in every case of injections of Fluorogold into the soft palate, the root of tongue, or the pharynx, about 30% of the Fluorogold-labeled neurons in the superior glossopharyngeal ganglion expressed CGRP-like immunoreactivity, while no double-labeled neurons were found in the inferior glossopharyngeal ganglion or the nodose ganglion. These results indicate that nociceptive sensory information from the soft palate, the root of tongue, and the pharynx might be conveyed by the neurons in the superior glossopharyngeal ganglion to the nucleus tractus solitarii.


Autonomic Neuroscience: Basic and Clinical | 2005

Projections to the alimentary canal from the dopaminergic neurons in the dorsal motor nucleus of the vagus of the rat

Kiyoshi Tsukamoto; Tetsu Hayakawa; Seishi Maeda; Koichi Tanaka; Makoto Seki; Takehira Yamamura

The motility of the alimentary canal is regulated not only by neurons that contain acetylcholine or adrenaline, but also by nonadrenergic noncholinergic neurons. There are many neurons containing dopamine in the dorsal motor nucleus of the vagus (DMV). We examined the projections of these dopaminergic neurons to the alimentary canal with double-labeling immunohistochemistry for tyrosine hydroxylase (TH) and the retrograde tracer cholera toxin subunit b following its injection into the subdiaphragmatic esophagus, the cardia, the pylorus, the duodenum, the jejunum, and the ascending colon. Almost all double-labeled neurons were found in the half of the DMV caudal to the area postrema. In the caudal half of the DMV, about 58% of the TH-immunoreactive neurons projected to the cardia, about 36% projected to the pylorus, and about 28% projected to the subdiaphragmatic esophagus. Only a few TH-immunoreactive neurons projected to the duodenum, the jejunum, or the ascending colon. As a whole, less than 10% of the neurons in the DMV that projected to the alimentary canal showed TH-like immunoreactivity. These results suggest that some of the dopaminergic neurons in the DMV might regulate the activities of the stomach and the subdiaphragmatic esophagus.


Anatomy and Embryology | 2000

Monosynaptic inputs from the nucleus tractus solitarii to the laryngeal motoneurons in the nucleus ambiguus of the rat.

Tetsu Hayakawa; Akinori Takanaga; Seishi Maeda; Hisao Ito; Makoto Seki

The cricothyroid (CT) and the posterior cricoarytenoid (PCA) muscles in the larynx are activated by the laryngeal motoneurons located within the nucleus ambiguus; these motoneurons receive the laryngeal sensory information from the nucleus tractus solitarii (NTS) during respiration and swallowing. We investigated whether the neurons in the NTS projected directly to the laryngeal motoneurons, and what is the synaptic organization of their nerve terminals on the laryngeal motoneurons using the electron microscope. When wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was injected into the NTS after cholera toxin subunit B-conjugated HRP (CT-HRP) was injected into the CT muscle or the PCA muscle, the anterogradely WGA-HRP-labeled terminals from the NTS were found to directly contact the retrogradely CT-HRP-labeled dendrites and soma of both the CT and the PCA motoneurons. The labeled NTS terminals comprised about 4% of the axosomatic terminals in a section through the CT motoneurons, and about 9% on both the small (PCA-A) and the large (PCA-B) PCA motoneurons. The number of labeled axosomatic terminals containing round vesicles and making asymmetric synaptic contacts (Gray’s type I) was almost equal to that of the labeled terminals containing pleomorphic vesicles and making symmetric synaptic contacts (Gray’s type II) on the CT motoneurons. The labeled axosomatic terminals were mostly Gray’s type II on the PCA-A motoneurons, while the majority of them were Gray’s type I on the PCA-B motoneurons. These results indicate that the laryngeal CT and PCA motoneurons receive a few direct excitatory and inhibitory inputs from the neurons in the NTS.


The Journal of Comparative Neurology | 2006

Direct synaptic contacts on the myenteric ganglia of the rat stomach from the dorsal motor nucleus of the vagus

Tetsu Hayakawa; Sachi Kuwahara; Seishi Maeda; Koichi Tanaka; Makoto Seki

The myenteric ganglia regulate not only gastric motility but also secretion, because a submucous plexus is sparsely developed in the rodent stomach. We have examined whether the neurons of the dorsal motor nucleus of the vagus (DMV) have direct synaptic contacts on the myenteric ganglia and the ultrastructure of the vagal efferent terminals by using wheat germ agglutinin conjugated to horseradish peroxidase (WGA‐HRP). The myenteric ganglia of the rat were composed of four types of neurons, i.e., small, medium‐sized, large, and elongated neurons. The average numbers of axosomatic terminals per profile were 2.0 on the small neurons, 3.1 on the medium‐sized neurons, 1.2 on the large neurons, and 4.2 on the elongated neuron. More than half of the axosomatic terminals contained round vesicles and formed asymmetric synaptic contacts on the small, medium‐sized, and large neurons. About 80% of the axosomatic terminals on the elongated neurons contained pleomorphic vesicles and formed asymmetric synaptic contacts. When WGA‐HRP was injected into the DMV, many anterogradely labeled terminals were found around the myenteric neurons. The labeled terminals were large (3.16 ± 0.10 μm) and contacted exclusively the somata. Most of them (about 90%) contained round vesicles and formed asymmetric synaptic contacts. Serial ultrathin sections revealed that almost all neurons in a ganglion received projections from the DMV. The vagal axon terminals generally contacted the medium‐sized or the elongated neurons, whereas a few labeled terminals contacted the small and the large neurons. The present results indicate that the DMV projects to all types of neurons and that their axon terminals contain mostly round synaptic vesicles and form asymmetric synaptic contacts. J. Comp. Neurol. 498:352–362, 2006.

Collaboration


Dive into the Seishi Maeda's collaboration.

Top Co-Authors

Avatar

Makoto Seki

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tetsu Hayakawa

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Koichi Tanaka

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sachi Kuwahara

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hisao Ito

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Keigo Kawabata

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hideshi Yagi

Hyogo College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge