Sek Mardy
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sek Mardy.
Antimicrobial Agents and Chemotherapy | 2006
M. A. Rameix-Welti; F. Agou; Philippe Buchy; Sek Mardy; Jean-Thierry Aubin; M. Véron; S. van der Werf; Nadia Naffakh
ABSTRACT Geographic spread of highly pathogenic avian H5N1 influenza viruses may give rise to an influenza pandemic. During the first months of a pandemic, control measures would rely mainly on antiviral drugs, such as the neuraminidase (NA) inhibitors oseltamivir and zanamivir. In this study, we compare the sensitivities to oseltamivir of the NAs of several highly pathogenic H5N1 viruses isolated in Asia from 1997 to 2005. The corresponding 50% inhibitory concentrations were determined using a standard in vitro NA inhibition assay. The Km for the substrate and the affinity for the inhibitor (Ki) of NA were determined for a 1997 and a 2005 virus, using an NA inhibition assay on cells transiently expressing the viral enzyme. Our data show that the sensitivities of the NAs of H5N1 viruses isolated in 2004 and 2005 to oseltamivir are about 10-fold higher than those of earlier H5N1 viruses or currently circulating H1N1 viruses. Three-dimensional modeling of the N1 protein predicted that Glu248Gly and Tyr252His changes could account for increased sensitivity. Our data indicate that genetic variation in the absence of any drug-selective pressure may result in significant variations in sensitivity to anti-NA drugs. Although the clinical relevance of a 10-fold increase in the sensitivity of NA to oseltamivir needs to be investigated further, the possibility that sensitivity to anti-NA drugs could increase (or possibly decrease) significantly, even in the absence of treatment, underscores the need for continuous evaluation of the impact of genetic drift on this parameter, especially for influenza viruses with pandemic potential.
Emerging Infectious Diseases | 2006
Sirenda Vong; Benjamin Coghlan; Sek Mardy; Davun Holl; Heng Seng; Sovann Ly; Megge Miller; Philippe Buchy; Yves Froehlich; Jean Baptiste Dufourcq; Timothy M. Uyeki; Wilina Lim; Touch Sok
Transmission is low despite extensive human contact with poultry.
Journal of Clinical Microbiology | 2011
Alicia Arnott; Sirenda Vong; Sek Mardy; Simon Chu; Monica Naughtin; Ly Sovann; Carole Buecher; Julien Beauté; Sareth Rith; Laurence Borand; Nima Asgari; Roger Frutos; Bertrand Guillard; Sok Touch; Vincent Deubel; Philippe Buchy
ABSTRACT Human respiratory syncytial virus (HRSV) is the leading cause of hospitalization of children aged <5 years due to respiratory illness in industrialized countries, and pneumonia is the leading cause of mortality among children aged <5 years worldwide. Although HRSV was first identified in 1956, a preventative vaccine has yet to be developed. Here we report the results of the first study to investigate the circulation and genetic diversity of HRSV in Cambodia among an all-ages population over 5 consecutive years. The incidences of HRSV infection among all-ages outpatient and hospitalized populations were equivalent, at 9.5% and 8.2%, respectively. Infection was most prevalent among children aged <5 years, with bronchiolitis being the most frequently observed clinical syndrome in the same age group. Circulation of HRSV was seasonal, typically coinciding with the rainy season between July and November annually. Strains belonging to HRSV groups A and B were detected with equivalent frequencies; however, we observed a potentially biennial shift in the predominant circulating HRSV genotype. The majority of HRSV group B strains belonged to the recently described BA genotype, with the exception of 10 strains classified as belonging to a novel HRSV group B genotype, SAB4, first reported here.
Emerging Infectious Diseases | 2008
Sirenda Vong; Sowath Ly; Sek Mardy; Davun Holl; Philippe Buchy
To determine potential risk for bird-to-human transmission during influenza A virus (H5N1) outbreaks among backyard poultry in rural Cambodia, we collected environmental specimens. Viral RNA was detected in 27 (35%) of 77 specimens of mud, pond water, water plants, and soil swabs. Our results underscore the need for regular disinfection of poultry areas.
Journal of Clinical Virology | 2010
Wei Wang; Philippe Cavailler; Peijun Ren; Jing Zhang; Wei Dong; Huajie Yan; Sek Mardy; Johann Cailhol; Philippe Buchy; Jun Sheng; Arnaud Fontanet; Vincent Deubel
Abstract Background Numerous viruses are responsible for respiratory infections; however, both their distribution and genetic diversity, in a limited area and a population subgroup, have been studied only rarely during a sustained period of time. Methods A 2-year surveillance program of children presenting with acute respiratory infections (ARIs) was carried out to characterize the viral etiology and to assess whether using gene amplification and sequencing could be a reliable approach to monitor virus introduction and spread in a population subgroup. Results Using multiplex RT-PCR, 15 different respiratory viruses were detected within the 486 nasopharyngeal positive samples collected among 817 children aged <9-year old who presented with ARI during October 2006 to September 2008. A single virus was detected in 373 patients (45.7%), and two to four viruses in 113 patients (13.8%). The most frequent causative viruses were respiratory syncytial virus (RSV) (24.7%), human bocavirus (24.5%), and human rhinovirus (HRV) (15%). RSV was more prevalent in winter and among young infants. Cases of seasonal influenza A and B viruses were reported mainly in January and August. An increase in adenovirus infection was observed during the spring of the second year of the study. Sequence analyses showed multiple introductions of different virus subtypes and identified a high prevalence of the newly defined HRV-C species. A higher viral incidence was observed during the winter of 2008, which was unusually cold. Conclusions This study supports the usefulness of multiplex RT-PCR for virus detection and co-infection, and for implementation of a molecular monitoring system for endemic and epidemic viral respiratory infections. Background Numerous viruses are responsible for respiratory infections; however, both their distribution and genetic diversity, in a limited area and a population subgroup, have been studied only rarely during a sustained period of time. Methods A 2-year surveillance program of children presenting with acute respiratory infections (ARIs) was carried out to characterize the viral etiology and to assess whether using gene amplification and sequencing could be a reliable approach to monitor virus introduction and spread in a population subgroup. Results Using multiplex RT-PCR, 15 different respiratory viruses were detected within the 486 nasopharyngeal positive samples collected among 817 children aged <9-year old who presented with ARI during October 2006 to September 2008. A single virus was detected in 373 patients (45.7%), and two to four viruses in 113 patients (13.8%). The most frequent causative viruses were respiratory syncytial virus (RSV) (24.7%), human bocavirus (24.5%), and human rhinovirus (HRV) (15%). RSV was more prevalent in winter and among young infants. Cases of seasonal influenza A and B viruses were reported mainly in January and August. An increase in adenovirus infection was observed during the spring of the second year of the study. Sequence analyses showed multiple introductions of different virus subtypes and identified a high prevalence of the newly defined HRV-C species. A higher viral incidence was observed during the winter of 2008, which was unusually cold. Conclusions This study supports the usefulness of multiplex RT-PCR for virus detection and co-infection, and for implementation of a molecular monitoring system for endemic and epidemic viral respiratory infections.
BMC Infectious Diseases | 2009
Sek Mardy; Sovann Ly; Seng Heng; Sirenda Vong; Chea Huch; Chea Nora; Nima Asgari; Megge Miller; Isabelle Bergeri; Sybille Rehmet; Duong Veasna; Weigong Zhou; Takeshi Kasai; Sok Touch; Philippe Buchy
BackgroundThere is little information about influenza disease among the Cambodian population. To better understand the dynamics of influenza in Cambodia, the Cambodian National Influenza Center (NIC) was established in August 2006. To continuously monitor influenza activity, a hospital based sentinel surveillance system for ILI (influenza like illness) with a weekly reporting and sampling scheme was established in five sites in 2006. In addition, hospital based surveillance of acute lower respiratory infection (ALRI) cases was established in 2 sites.MethodsThe sentinel sites collect weekly epidemiological data on ILI patients fulfilling the case definition, and take naso-pharyngeal specimens from a defined number of cases per week. The samples are tested in the Virology Unit at the Institut Pasteur in Phnom Penh. From each sample viral RNA was extracted and amplified by a multiplex RT-PCR detecting simultaneously influenza A and influenza B virus. Influenza A viruses were then subtyped and analyzed by hemagglutination inhibition assay. Samples collected by the ALRI system were tested with the same approach.ResultsFrom 2006 to 2008, influenza circulation was observed mainly from June to December, with a clear seasonal peak in October shown in the data from 2008.ConclusionInfluenza activity in Cambodia occurred during the rainy season, from June to December, and ended before the cool season (extending usually from December to February). Although Cambodia is a tropical country geographically located in the northern hemisphere, influenza activity has a southern hemisphere transmission pattern. Together with the antigenic analysis of the circulating strains, it is now possible to give better influenza vaccination recommendation for Cambodia.
Journal of Virological Methods | 2009
Wei Wang; Peijun Ren; Jun Sheng; Sek Mardy; Huajie Yan; Jing Zhang; Lili Hou; Astrid Vabret; Philippe Buchy; François Freymuth; Vincent Deubel
Abstract A 4-tube multiplex RT-PCR (mRT-PCR), which showed higher sensitivity over conventional methods, was previously developed for the diagnosis of 14 viral pathogens of the respiratory tract. Herein the mRT-PCR was compared to the commercial Luminex mPCR-microsphere flow cytometry assay (Resplex II) which allows the detection of 12 different viruses. Eleven different viruses were identified in 91 nasopharyngeal swabs of children with acute respiratory infection, influenza A (IAV) and B, respiratory syncytial virus (RSV), human rhinovirus (hRhV), human echovirus, parainfluenza viruses (PIV) 1, 2, 3 and 4, human metapneumovirus (hMPV), and human coronavirus NL63. The results of the two techniques showed 53 and 40 positive patients by the Resplex II assay and mRT-PCR, respectively, with a concordance in 35 positive and 33 negative patients (74.7%). Individual RT-PCR tests were performed to control viruses not simultaneously detected by the two multiplex assays. The major virus misdiagnosed by mRT-PCR was IAV whereas the major viruses misdiagnosed by Resplex II were PIV1, 3 and 4. The mRT-PCR remains a simple, rapid, and specific assay for the specific detection of respiratory viruses, and can be easily implemented with standards in clinical laboratories at a low cost.
Journal of Medical Virology | 2010
Carole Buecher; Sek Mardy; Wei Wang; Veasna Duong; Sirenda Vong; Monica Naughtin; Astrid Vabret; François Freymuth; Vincent Deubel; Philippe Buchy
Acute respiratory infections are a major cause of mortality and morbidity worldwide. Using multiplex PCR/RT‐PCR methods for the detection of 18 respiratory viruses, the circulation of those viruses during 3 consecutive dry seasons in Cambodia was described. Among 234 patients who presented with influenza‐like illness, 35.5% were positive for at least one virus. Rhinoviruses (43.4%), parainfluenza (31.3%) viruses and coronaviruses (21.7%) were the most frequently detected viruses. Influenza A virus, parainfluenza virus 4 and SARS‐coronavirus were not detected during the study period. Ninety apparently healthy individuals were included as controls and 10% of these samples tested positive for one or more respiratory viruses. No significant differences were observed in frequency and in virus copy numbers for rhinovirus detection between symptomatic and asymptomatic groups. This study raises questions about the significance of the detection of some respiratory viruses, especially using highly sensitive methods, given their presence in apparently healthy individuals. The link between the presence of the virus and the origin of the illness is therefore unclear. J. Med. Virol. 82:1762–1772, 2010.
Emerging Infectious Diseases | 2009
Philippe Buchy; Mathieu Fourment; Sek Mardy; San Sorn; Davun Holl; Sowath Ly; Sirenda Vong; Vincent Enouf; J. S. Malik Peiris; Silvie van der Werf
To determine the origin of influenza A virus (H5N1) epizootics in Cambodia, we used maximum-likelihood and Bayesian methods to analyze the genetic sequences of subtype H5N1 strains from Cambodia and neighboring areas. Poultry movements, rather than repeated reintroduction of subtype H5N1 viruses by wild birds, appear to explain virus circulation and perpetuation.
Analytical Chemistry | 2010
Sun Hee Lim; Philippe Buchy; Sek Mardy; Moon Sik Kang; Alexey Dan Chin Yu
In the present study, we report a novel separation-free method to detect and quantify avian influenza virus A (H5N1) nucleic acid without amplification, based on the alteration of photophysical parameters of quantum dot (QD) probes after hybridization with specific complementary target DNA. The target DNA was quantified in a custom-made portable device by simultaneously measuring lifetime and quenching of the QD probes. QD probes (25-mer) showed a 30% lifetime reduction and 40% fluorescence quenching when hybridized with complementary 25-mer target DNA. In comparison with a conventional QD-based assay, this assay provides a simple quantitation of nucleic acids with a single labeling step.