Selena G. Burgess
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Selena G. Burgess.
Journal of Cell Biology | 2013
Fiona E. Hood; Samantha Williams; Selena G. Burgess; Mark W. Richards; Daniel Roth; Anne Straube; Mark Pfuhl; Richard Bayliss; Stephen J. Royle
Aurora A phosphorylation-induced interaction of TACC3 and clathrin coordinates adjacent domains in each protein to create a microtubule-binding interface, whereas a distinct site in TACC3 recruits ch-TOG to mitotic spindles.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Mark W. Richards; Selena G. Burgess; Evon Poon; Anne Carstensen; Martin Eilers; Louis Chesler; Richard Bayliss
Significance Elevated levels of N-Myc protein (the product of the MYCN oncogene) drive cancers such as neuroblastoma. Accumulation of N-Myc in these cancer cells depends upon the formation of a complex with the protein kinase Aurora-A in which the N-Myc is not properly degraded. We mapped the region of N-Myc that interacts with Aurora-A and determined the molecular structure of the complex. Because this region also interacts with cellular machinery that targets N-Myc for degradation, we sought to understand the mechanism by which N-Myc stabilizes Aurora-A. The structure explains how compounds that induce distorted conformations of Aurora-A are able to disrupt the interaction with N-Myc. This understanding may provide a basis for designing better compounds that work in this way for the treatment of neuroblastoma. Myc family proteins promote cancer by inducing widespread changes in gene expression. Their rapid turnover by the ubiquitin–proteasome pathway is regulated through phosphorylation of Myc Box I and ubiquitination by the E3 ubiquitin ligase SCFFbxW7. However, N-Myc protein (the product of the MYCN oncogene) is stabilized in neuroblastoma by the protein kinase Aurora-A in a manner that is sensitive to certain Aurora-A–selective inhibitors. Here we identify a direct interaction between the catalytic domain of Aurora-A and a site flanking Myc Box I that also binds SCFFbxW7. We determined the crystal structure of the complex between Aurora-A and this region of N-Myc to 1.72-Å resolution. The structure indicates that the conformation of Aurora-A induced by compounds such as alisertib and CD532 is not compatible with the binding of N-Myc, explaining the activity of these compounds in neuroblastoma cells and providing a rational basis for the design of cancer therapeutics optimized for destabilization of the complex. We also propose a model for the stabilization mechanism in which binding to Aurora-A alters how N-Myc interacts with SCFFbxW7 to disfavor the generation of Lys48-linked polyubiquitin chains.
PLOS Genetics | 2015
Selena G. Burgess; Isabel Peset; Nimesh Joseph; Tommaso Cavazza; Isabelle Vernos; Mark Pfuhl; Fanni Gergely; Richard Bayliss
The essential mammalian gene TACC3 is frequently mutated and amplified in cancers and its fusion products exhibit oncogenic activity in glioblastomas. TACC3 functions in mitotic spindle assembly and chromosome segregation. In particular, phosphorylation on S558 by the mitotic kinase, Aurora-A, promotes spindle recruitment of TACC3 and triggers the formation of a complex with ch-TOG-clathrin that crosslinks and stabilises kinetochore microtubules. Here we map the Aurora-A-binding interface in TACC3 and show that TACC3 potently activates Aurora-A through a domain centered on F525. Vertebrate cells carrying homozygous F525A mutation in the endogenous TACC3 loci exhibit defects in TACC3 function, namely perturbed localization, reduced phosphorylation and weakened interaction with clathrin. The most striking feature of the F525A cells however is a marked shortening of mitosis, at least in part due to rapid spindle assembly. F525A cells do not exhibit chromosome missegregation, indicating that they undergo fast yet apparently faithful mitosis. By contrast, mutating the phosphorylation site S558 to alanine in TACC3 causes aneuploidy without a significant change in mitotic duration. Our work has therefore defined a regulatory role for the Aurora-A-TACC3 interaction beyond the act of phosphorylation at S558. We propose that the regulatory relationship between Aurora-A and TACC3 enables the transition from the microtubule-polymerase activity of TACC3-ch-TOG to the microtubule-crosslinking activity of TACC3-ch-TOG-clathrin complexes as mitosis progresses. Aurora-A-dependent control of TACC3 could determine the balance between these activities, thereby influencing not only spindle length and stability but also the speed of spindle formation with vital consequences for chromosome alignment and segregation.
Biology Open | 2015
Cristina Gutiérrez-Caballero; Selena G. Burgess; Richard Bayliss; Stephen J. Royle
ABSTRACT The interaction between TACC3 (transforming acidic coiled coil protein 3) and the microtubule polymerase ch-TOG (colonic, hepatic tumor overexpressed gene) is evolutionarily conserved. Loading of TACC3–ch-TOG onto mitotic spindle microtubules requires the phosphorylation of TACC3 by Aurora-A kinase and the subsequent interaction of TACC3 with clathrin to form a microtubule-binding surface. Recent work indicates that TACC3 can track the plus-ends of microtubules and modulate microtubule dynamics in non-dividing cells via its interaction with ch-TOG. Whether there is a pool of TACC3–ch-TOG that is independent of clathrin in human cells, and what is the function of this pool, are open questions. Here, we describe the molecular interaction between TACC3 and ch-TOG that permits TACC3 recruitment to the plus-ends of microtubules. This TACC3–ch-TOG pool is independent of EB1, EB3, Aurora-A phosphorylation and binding to clathrin. We also describe the distinct combinatorial subcellular pools of TACC3, ch-TOG and clathrin. TACC3 is often described as a centrosomal protein, but we show that there is no significant population of TACC3 at centrosomes. The delineation of distinct protein pools reveals a simplified view of how these proteins are organized and controlled by post-translational modification.
Open Biology | 2016
Selena G. Burgess; Arkadiusz Oleksy; Tommaso Cavazza; Mark W. Richards; Isabelle Vernos; David J. Matthews; Richard Bayliss
The vast majority of clinically approved protein kinase inhibitors target the ATP-binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors.
Nature Communications | 2015
Tamanna Haq; Mark W. Richards; Selena G. Burgess; Pablo Gallego; Sharon Yeoh; Laura O'Regan; David Reverter; Joan Roig; Andrew M. Fry; Richard Bayliss
Mitotic spindle assembly requires the regulated activities of protein kinases such as Nek7 and Nek9. Nek7 is autoinhibited by the protrusion of Tyr97 into the active site and activated by the Nek9 non-catalytic C-terminal domain (CTD). CTD binding apparently releases autoinhibition because mutation of Tyr97 to phenylalanine increases Nek7 activity independently of Nek9. Here we find that self-association of the Nek9-CTD is needed for Nek7 activation. We map the minimal Nek7 binding region of Nek9 to residues 810–828. A crystal structure of Nek7Y97F bound to Nek9810–828 reveals a binding site on the C-lobe of the Nek7 kinase domain. Nek7Y97F crystallizes as a back-to-back dimer between kinase domain N-lobes, in which the specific contacts within the interface are coupled to the conformation of residue 97. Hence, we propose that the Nek9-CTD activates Nek7 through promoting back-to-back dimerization that releases the autoinhibitory tyrosine residue, a mechanism conserved in unrelated kinase families.
Biochemical Society Transactions | 2017
Richard Bayliss; Selena G. Burgess; Eoin Leen; Mark W. Richards
The Myc proteins comprise a family of ubiquitous regulators of gene expression implicated in over half of all human cancers. They interact with a large number of other proteins, such as transcription factors, chromatin-modifying enzymes and kinases. Remarkably, few of these interactions have been characterized structurally. This is at least in part due to the intrinsically disordered nature of Myc proteins, which adopt a defined conformation only in the presence of binding partners. Owing to this behaviour, crystallographic studies on Myc proteins have been limited to short fragments in complex with other proteins. Most recently, we determined the crystal structure of Aurora-A kinase domain bound to a 28-amino acid fragment of the N-Myc transactivation domain. The structure reveals an α-helical segment within N-Myc capped by two tryptophan residues that recognize the surface of Aurora-A. The kinase domain acts as a molecular scaffold, independently of its catalytic activity, upon which this region of N-Myc becomes ordered. The binding site for N-Myc on Aurora-A is disrupted by certain ATP-competitive inhibitors, such as MLN8237 (alisertib) and CD532, and explains how these kinase inhibitors are able to disrupt the protein-protein interaction to affect Myc destabilization. Structural studies on this and other Myc complexes will lead to the design of protein-protein interaction inhibitors as chemical tools to dissect the complex pathways of Myc regulation and function, which may be developed into Myc inhibitors for the treatment of cancer.
FEBS Journal | 2017
Richard Bayliss; Selena G. Burgess; Patrick J. McIntyre
Protein kinases are central players in the regulation of cell cycle and signalling pathways. Their catalytic activities are strictly regulated through post‐translational modifications and protein–protein interactions that control switching between inactive and active states. These states have been studied extensively using protein crystallography, although the dynamic nature of protein kinases makes it difficult to capture all relevant states. Here, we describe two recent structures of Aurora‐A kinase that trap its active and inactive states. In both cases, Aurora‐A is trapped through interaction with a synthetic protein, either a single‐domain antibody that inhibits the kinase or a hydrocarbon‐stapled peptide that activates the kinase. These structures show how the distinct synthetic proteins target the same allosteric pocket with opposing effects on activity. These studies pave the way for the development of tools to probe these allosteric mechanisms in cells.
ACS Chemical Biology | 2017
Patrick J. McIntyre; P. Collins; Lukáš Vrzal; Kristian Birchall; Laurence H. Arnold; Chido Mpamhanga; Peter J. Coombs; Selena G. Burgess; Mark W. Richards; Anja Winter; Vaclav Veverka; Frank von Delft; Andy Merritt; Richard Bayliss
The mitotic kinase Aurora-A and its partner protein TPX2 (Targeting Protein for Xenopus kinesin-like protein 2) are overexpressed in cancers, and it has been proposed that they work together as an oncogenic holoenzyme. TPX2 is responsible for activating Aurora-A during mitosis, ensuring proper cell division. Disruption of the interface with TPX2 is therefore a potential target for novel anticancer drugs that exploit the increased sensitivity of cancer cells to mitotic stress. Here, we investigate the interface using coprecipitation assays and isothermal titration calorimetry to quantify the energetic contribution of individual residues of TPX2. Residues Tyr8, Tyr10, Phe16, and Trp34 of TPX2 are shown to be crucial for robust complex formation, suggesting that the interaction could be abrogated through blocking any of the three pockets on Aurora-A that complement these residues. Phosphorylation of Aurora-A on Thr288 is also necessary for high-affinity binding, and here we identify arginine residues that communicate the phosphorylation of Thr288 to the TPX2 binding site. With these findings in mind, we conducted a high-throughput X-ray crystallography-based screen of 1255 fragments against Aurora-A and identified 59 hits. Over three-quarters of these hits bound to the pockets described above, both validating our identification of hotspots and demonstrating the druggability of this protein-protein interaction. Our study exemplifies the potential of high-throughput crystallography facilities such as XChem to aid drug discovery. These results will accelerate the development of chemical inhibitors of the Aurora-A/TPX2 interaction.
The EMBO Journal | 2018
Selena G. Burgess; Manjeet Mukherjee; Sarah Sabir; Nimesh Joseph; Cristina Gutiérrez-Caballero; Mark W. Richards; Nicolas Huguenin-Dezot; Jason W. Chin; Eileen J. Kennedy; Mark Pfuhl; Stephen J. Royle; Fanni Gergely; Richard Bayliss
Aurora‐A regulates the recruitment of TACC3 to the mitotic spindle through a phospho‐dependent interaction with clathrin heavy chain (CHC). Here, we describe the structural basis of these interactions, mediated by three motifs in a disordered region of TACC3. A hydrophobic docking motif binds to a previously uncharacterized pocket on Aurora‐A that is blocked in most kinases. Abrogation of the docking motif causes a delay in late mitosis, consistent with the cellular distribution of Aurora‐A complexes. Phosphorylation of Ser558 engages a conformational switch in a second motif from a disordered state, needed to bind the kinase active site, into a helical conformation. The helix extends into a third, adjacent motif that is recognized by a helical‐repeat region of CHC, not a recognized phospho‐reader domain. This potentially widespread mechanism of phospho‐recognition provides greater flexibility to tune the molecular details of the interaction than canonical recognition motifs that are dominated by phosphate binding.