Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Selidji Todagbe Agnandji is active.

Publication


Featured researches published by Selidji Todagbe Agnandji.


Clinical Infectious Diseases | 2008

Placental Malaria Increases Malaria Risk in the First 30 Months of Life

Norbert Georg Schwarz; Ayola A. Adegnika; Lutz P. Breitling; Julian J. Gabor; Selidji Todagbe Agnandji; Robert D. Newman; Bertrand Lell; Saadou Issifou; Maria Yazdanbakhsh; Adrian J. F. Luty; Peter G Kremsner; Martin P. Grobusch

BACKGROUND Plasmodium falciparum infection during pregnancy is associated with stillbirth, fetal growth restriction, and low birth weight. An additional consequence may be increased risk of malaria in early life, although the epidemiological evidence of this consequence is limited. METHODS A cohort of 527 children were observed actively every month for 30 months after delivery. Offspring of mothers with microscopically detectable placental P. falciparum infection at the time of delivery were defined as exposed. The outcome measure was malaria (parasitemia and fever). Analyses were performed using Cox proportional hazard models and were stratified by gravidity. RESULTS Overall, offspring of mothers with placental P. falciparum infection had a significantly higher risk of clinical malaria during the first 30 months of life (adjusted hazard ratio, 2.1; 95% confidence interval [CI], 1.2-3.7). The adjusted hazard ratio for offspring of multigravidae was 2.6 (95% CI, 1.3-5.3), and that for primigravidae was 1.5 (95% CI, 0.6-3.8). The offspring of placenta-infected primigravidae had no episodes of malaria during the first year of life. CONCLUSIONS Our findings show that active placental P. falciparum infection detected at delivery is associated with an approximately 2-fold greater risk of malaria during early life, compared with noninfection. The fact that persons born to infected multigravidae rather than primigravidae appear to be at greater risk emphasizes the importance of preventing malaria in mothers of all gravidities.


The New England Journal of Medicine | 2015

Genetic diversity and protective efficacy of the RTS,S/AS01 malaria vaccine

Daniel E. Neafsey; Michal Juraska; Trevor Bedford; David Benkeser; Clarissa Valim; Allison D. Griggs; Marc Lievens; Salim Abdulla; Samuel Adjei; Tsiri Agbenyega; Selidji Todagbe Agnandji; Pedro Aide; Scott Anderson; Daniel Ansong; John J. Aponte; Kwaku Poku Asante; Philip Bejon; Ashley J. Birkett; Myriam Bruls; Kristen M. Connolly; Umberto D'Alessandro; Carlota Dobaño; Samwel Gesase; Brian Greenwood; Jonna Grimsby; Halidou Tinto; Mary J. Hamel; Irving Hoffman; Portia Kamthunzi; Simon Kariuki

BACKGROUND The RTS,S/AS01 vaccine targets the circumsporozoite protein of Plasmodium falciparum and has partial protective efficacy against clinical and severe malaria disease in infants and children. We investigated whether the vaccine efficacy was specific to certain parasite genotypes at the circumsporozoite protein locus. METHODS We used polymerase chain reaction-based next-generation sequencing of DNA extracted from samples from 4985 participants to survey circumsporozoite protein polymorphisms. We evaluated the effect that polymorphic positions and haplotypic regions within the circumsporozoite protein had on vaccine efficacy against first episodes of clinical malaria within 1 year after vaccination. RESULTS In the per-protocol group of 4577 RTS,S/AS01-vaccinated participants and 2335 control-vaccinated participants who were 5 to 17 months of age, the 1-year cumulative vaccine efficacy was 50.3% (95% confidence interval [CI], 34.6 to 62.3) against clinical malaria in which parasites matched the vaccine in the entire circumsporozoite protein C-terminal (139 infections), as compared with 33.4% (95% CI, 29.3 to 37.2) against mismatched malaria (1951 infections) (P=0.04 for differential vaccine efficacy). The vaccine efficacy based on the hazard ratio was 62.7% (95% CI, 51.6 to 71.3) against matched infections versus 54.2% (95% CI, 49.9 to 58.1) against mismatched infections (P=0.06). In the group of infants 6 to 12 weeks of age, there was no evidence of differential allele-specific vaccine efficacy. CONCLUSIONS These results suggest that among children 5 to 17 months of age, the RTS,S vaccine has greater activity against malaria parasites with the matched circumsporozoite protein allele than against mismatched malaria. The overall vaccine efficacy in this age category will depend on the proportion of matched alleles in the local parasite population; in this trial, less than 10% of parasites had matched alleles. (Funded by the National Institutes of Health and others.).


Lancet Infectious Diseases | 2011

Safety and efficacy of the RTS,S/AS01E candidate malaria vaccine given with expanded-programme-on-immunisation vaccines: 19 month follow-up of a randomised, open-label, phase 2 trial

Kwaku Poku Asante; Salim Abdulla; Selidji Todagbe Agnandji; John Lyimo; Johan Vekemans; Solange Soulanoudjingar; Ruth Owusu; Mwanajaa Shomari; Amanda Leach; Erik Jongert; Nahya Salim; José Francisco Fernandes; David Dosoo; Maria Chikawe; Saadou Issifou; Kingsley Osei-Kwakye; Marc Lievens; Tina Möller; Stephen Apanga; Grace Mwangoka; Marie-Claude Dubois; Tigani Madi; Evans Kwara; Rose Minja; Aurore B. Hounkpatin; Owusu Boahen; Kingsley Kayan; George Adjei; Daniel Chandramohan; Terrell Carter

BACKGROUND The RTS,S/AS01(E) candidate malaria vaccine is being developed for immunisation of infants in Africa through the expanded programme on immunisation (EPI). 8 month follow-up data have been reported for safety and immunogenicity of RTS,S/AS01(E) when integrated into the EPI. We report extended follow-up to 19 months, including efficacy results. METHODS We did a randomised, open-label, phase 2 trial of safety and efficacy of the RTS,S/AS01(E) candidate malaria vaccine given with EPI vaccines between April 30, 2007, and Oct 7, 2009, in Ghana, Tanzania, and Gabon. Eligible children were 6-10 weeks of age at first vaccination, without serious acute or chronic illness. All children received the EPI diphtheria, tetanus, pertussis (inactivated whole-cell), and hepatitis-B vaccines, Haemophilus influenzae type b vaccine, and oral polio vaccine at study months 0, 1, and 2, and measles vaccine and yellow fever vaccines at study month 7. Participants were randomly assigned (1:1:1) to receive three doses of RTS,S/AS01(E) at 6, 10, and 14 weeks (0, 1, 2 month schedule) or at 6 weeks, 10 weeks, and 9 months (0, 2, 7 month schedule) or placebo. Randomisation was according to a predefined block list with a computer-generated randomisation code. Detection of serious adverse events and malaria was by passive case detection. Antibodies against Plasmodium falciparum circumsporozoite protein and HBsAg were monitored for 19 months. This study is registered with ClinicalTrials.gov, number NCT00436007. FINDINGS 511 children were enrolled. Serious adverse events occurred in 57 participants in the RTS,S/AS01(E) 0, 1, 2 month group (34%, 95% CI 27-41), 47 in the 0, 1, 7 month group (28%, 21-35), and 49 (29%, 22-36) in the control group; none were judged to be related to study vaccination. At month 19, anticircumsporozoite immune responses were significantly higher in the RTS,S/AS01(E) groups than in the control group. Vaccine efficacy for the 0, 1, 2 month schedule (2 weeks after dose three to month 19, site-adjusted according-to-protocol analysis) was 53% (95% CI 26-70; p=0·0012) against first malaria episodes and 59% (36-74; p=0·0001) against all malaria episodes. For the entire study period, (total vaccinated cohort) vaccine efficacy against all malaria episodes was higher with the 0, 1, 2 month schedule (57%, 95% CI 33-73; p=0·0002) than with the 0, 1, 7 month schedule (32% CI 16-45; p=0·0003). 1 year after dose three, vaccine efficacy against first malaria episodes was similar for both schedules (0, 1, 2 month group, 61·6% [95% CI 35·6-77·1], p<0·001; 0, 1, 7 month group, 63·8% [40·4-78·0], p<0·001, according-to-protocol cohort). INTERPRETATION Vaccine efficacy was consistent with the target put forward by the WHO-sponsored malaria vaccine technology roadmap for a first-generation malaria vaccine. The 0, 1, 2 month vaccine schedule has been selected for phase 3 candidate vaccine assessment. FUNDING Program for Appropriate Technology in Health Malaria Vaccine Initiative; GlaxoSmithKline Biologicals.


Lancet Infectious Diseases | 2015

Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial

Michael T. White; Robert Verity; Jamie T. Griffin; Kwaku Poku Asante; Seth Owusu-Agyei; Brian Greenwood; Chris Drakeley; Samwel Gesase; John Lusingu; Daniel Ansong; Samuel Adjei; Tsiri Agbenyega; Bernhards Ogutu; Lucas Otieno; Walter Otieno; Selidji Todagbe Agnandji; Bertrand Lell; Peter G. Kremsner; Irving Hoffman; Francis Martinson; Portia Kamthunzu; Halidou Tinto; Innocent Valea; Hermann Sorgho; Martina Oneko; Kephas Otieno; Mary J. Hamel; Nahya Salim; Ali Mtoro; Salim Abdulla

Summary Background The RTS,S/AS01 malaria vaccine targets the circumsporozoite protein, inducing antibodies associated with the prevention of Plasmodium falciparum infection. We assessed the association between anti-circumsporozoite antibody titres and the magnitude and duration of vaccine efficacy using data from a phase 3 trial done between 2009 and 2014. Methods Using data from 8922 African children aged 5–17 months and 6537 African infants aged 6–12 weeks at first vaccination, we analysed the determinants of immunogenicity after RTS,S/AS01 vaccination with or without a booster dose. We assessed the association between the incidence of clinical malaria and anti-circumsporozoite antibody titres using a model of anti-circumsporozoite antibody dynamics and the natural acquisition of protective immunity over time. Findings RTS,S/AS01-induced anti-circumsporozoite antibody titres were greater in children aged 5–17 months than in those aged 6–12 weeks. Pre-vaccination anti-circumsporozoite titres were associated with lower immunogenicity in children aged 6–12 weeks and higher immunogenicity in those aged 5–17 months. The immunogenicity of the booster dose was strongly associated with immunogenicity after primary vaccination. Anti-circumsporozoite titres wane according to a biphasic exponential distribution. In participants aged 5–17 months, the half-life of the short-lived component of the antibody response was 45 days (95% credible interval 42–48) and that of the long-lived component was 591 days (557–632). After primary vaccination 12% (11–13) of the response was estimated to be long-lived, rising to 30% (28–32%) after a booster dose. An anti-circumsporozoite antibody titre of 121 EU/mL (98–153) was estimated to prevent 50% of infections. Waning anti-circumsporozoite antibody titres predict the duration of efficacy against clinical malaria across different age categories and transmission intensities, and efficacy wanes more rapidly at higher transmission intensity. Interpretation Anti-circumsporozoite antibody titres are a surrogate of protection for the magnitude and duration of RTS,S/AS01 efficacy, with or without a booster dose, providing a valuable surrogate of effectiveness for new RTS,S formulations in the age groups considered. Funding UK Medical Research Council.


PLOS ONE | 2009

A randomized trial assessing the safety and immunogenicity of AS01 and AS02 adjuvanted RTS,S malaria vaccine candidates in children in Gabon.

Bertrand Lell; Selidji Todagbe Agnandji; Isabelle von Glasenapp; Sonja Haertle; Sunny Oyakhiromen; Saadou Issifou; Johan Vekemans; Amanda Leach; Marc Lievens; Marie-Claude Dubois; Marie-Ange Demoitié; Terrell Carter; Tonya Villafana; W. Ripley Ballou; Joe Cohen; Peter G. Kremsner

Background The malaria vaccine candidate antigen RTS,S includes parts of the pre-erythrocytic stage circumsporozoite protein fused to the Hepatitis B surface antigen. Two Adjuvant Systems are in development for this vaccine, an oil-in water emulsion – based formulation (AS02) and a formulation based on liposomes (AS01). Methods & Principal Findings In this Phase II, double-blind study (NCT00307021), 180 healthy Gabonese children aged 18 months to 4 years were randomized to receive either RTS,S/AS01E or RTS,S/AS02D, on a 0–1–2 month vaccination schedule. The children were followed-up daily for six days after each vaccination and monthly for 14 months. Blood samples were collected at 4 time-points. Both vaccines were well tolerated. Safety parameters were distributed similarly between the two groups. Both vaccines elicited a strong specific immune response after Doses 2 and 3 with a ratio of anti-CS GMT titers (AS02D/AS01E) of 0.88 (95% CI: 0.68–1.15) post-Dose 3. After Doses 2 and 3 of experimental vaccines, anti-CS and anti-HBs antibody GMTs were higher in children who had been previously vaccinated with at least one dose of hepatitis B vaccine compared to those not previously vaccinated. Conclusions RTS,S/AS01E proved similarly as well tolerated and immunogenic as RTS,S/AS02D, completing an essential step in the age de-escalation process within the RTS,S clinical development plan. Trial Registration ClinicalTrials.gov. NCT00307021


Lancet Infectious Diseases | 2013

Efficacy of RTS,S malaria vaccines: individual-participant pooled analysis of phase 2 data

Philip Bejon; Michael T. White; Ally Olotu; Kalifa Bojang; John Lusingu; Nahya Salim; Nekoye Otsyula; Selidji Todagbe Agnandji; Kwaku Poku Asante; Seth Owusu-Agyei; Salim Abdulla; Azra C. Ghani

Summary Background The efficacy of RTS,S/AS01 as a vaccine for malaria is being tested in a phase 3 clinical trial. Early results show significant, albeit partial, protection against clinical malaria and severe malaria. To ascertain variations in vaccine efficacy according to covariates such as transmission intensity, choice of adjuvant, age at vaccination, and bednet use, we did an individual-participant pooled analysis of phase 2 clinical data. Methods We analysed data from 11 different sites in Africa, including 4453 participants. We measured heterogeneity in vaccine efficacy by estimating the interactions between covariates and vaccination in pooled multivariable Cox regression and Poisson regression analyses. Endpoints for measurement of vaccine efficacy were infection, clinical malaria, severe malaria, and death. We defined transmission intensity levels according to the estimated local parasite prevalence in children aged 2–10 years (PrP2–10), ranging from 5% to 80%. Choice of adjuvant was either AS01 or AS02. Findings Vaccine efficacy against all episodes of clinical malaria varied by transmission intensity (p=0·001). At low transmission (PrP2–10 10%) vaccine efficacy was 60% (95% CI 54 to 67), at moderate transmission (PrP2–10 20%) it was 41% (21 to 57), and at high transmission (PrP2–10 70%) the efficacy was 4% (−10 to 22). Vaccine efficacy also varied by adjuvant choice (p<0·0001)—eg, at low transmission (PrP2–10 10%), efficacy varied from 60% (95% CI 54 to 67) for AS01 to 47% (14 to 75) for AS02. Variations in efficacy by age at vaccination were of borderline significance (p=0·038), and bednet use and sex were not significant covariates. Vaccine efficacy (pooled across adjuvant choice and transmission intensity) varied significantly (p<0·0001) according to time since vaccination, from 36% efficacy (95% CI 24 to 45) at time of vaccination to 0% (−38 to 38) after 3 years. Interpretation Vaccine efficacy against clinical disease was of limited duration and was not detectable 3 years after vaccination. Furthermore, efficacy fell with increasing transmission intensity. Outcomes after vaccination cannot be gauged accurately on the basis of one pooled efficacy figure. However, predictions of public-health outcomes of vaccination will need to take account of variations in efficacy by transmission intensity and by time since vaccination. Funding Medical Research Council (UK); Bill & Melinda Gates Foundation Vaccine Modelling Initiative; Wellcome Trust.


Tropical Medicine & International Health | 2010

Epidemiology of parasitic co-infections during pregnancy in Lambaréné, Gabon.

Ayola A. Adegnika; Michael Ramharter; Selidji Todagbe Agnandji; Ulysse Ateba Ngoa; Saadou Issifou; Maria Yazdanbahksh; Peter G. Kremsner

Objectives  To evaluate the epidemiologic data of parasitic infections and co‐infections in pregnant women in Lambaréné, Gabon.


The Journal of Infectious Diseases | 2010

Evaluation of the Safety and Immunogenicity of the RTS,S/AS01E Malaria Candidate Vaccine When Integrated in the Expanded Program of Immunization

Selidji Todagbe Agnandji; Kwaku Poku Asante; John Lyimo; Johan Vekemans; Solange Soulanoudjingar; Ruth Owusu; Mwanajaa Shomari; Amanda Leach; José Francisco Fernandes; David Dosoo; Maria Chikawe; Saadou Issifou; Kingsley Osei-Kwakye; Marc Lievens; Stephen Apanga; Grace Mwangoka; Blaise Okissi; Evans Kwara; Rose Minja; Jorn Lange; Owusu Boahen; Kingsley Kayan; George Adjei; Daniel Chandramohan; Erik Jongert; Marie-Ange Demoitié; Marie-Claude Dubois; Terrel Carter; Preeti Vansadia; Tonya Villafana

BACKGROUND The RTS,S/AS01(E) malaria candidate vaccine is being developed for immunization of African infants through the Expanded Program of Immunization (EPI). METHODS This phase 2, randomized, open, controlled trial conducted in Ghana, Tanzania, and Gabon evaluated the safety and immunogenicity of RTS,S/AS01(E) when coadministered with EPI vaccines. Five hundred eleven infants were randomized to receive RTS,S/AS01(E) at 0, 1, and 2 months (in 3 doses with diphtheria, tetanus, and whole-cell pertussis conjugate [DTPw]; hepatitis B [HepB]; Haemophilus influenzae type b [Hib]; and oral polio vaccine [OPV]), RTS,S/AS01(E) at 0, 1, and 7 months (2 doses with DTPwHepB/Hib+OPV and 1 dose with measles and yellow fever), or EPI vaccines only. RESULTS The occurrences of serious adverse events were balanced across groups; none were vaccine-related. One child from the control group died. Mild to moderate fever and diaper dermatitis occurred more frequently in the RTS,S/AS01(E) coadministration groups. RTS,S/AS01(E) generated high anti-circumsporozoite protein and anti-hepatitis B surface antigen antibody levels. Regarding EPI vaccine responses upon coadministration when considering both immunization schedules, despite a tendency toward lower geometric mean titers to some EPI antigens, predefined noninferiority criteria were met for all EPI antigens except for polio 3 when EPI vaccines were given with RTS,S/AS01(E) at 0, 1, and 2 months. However, when antibody levels at screening were taken into account, the rates of response to polio 3 antigens were comparable between groups. CONCLUSION RTS,S/AS01(E) integrated in the EPI showed a favorable safety and immunogenicity evaluation. Trial registration. ClinicalTrials.gov identifier: NCT00436007 . GlaxoSmithKline study ID number: 106369 (Malaria-050).


The Journal of Infectious Diseases | 2008

Pregnancy-Associated Malaria Affects Toll-Like Receptor Ligand—Induced Cytokine Responses in Cord Blood

Ayola A. Adegnika; Carsten Köhler; Selidji Todagbe Agnandji; Sanders K. Chai; Lucja A. Labuda; Lutz P. Breitling; Dorrith Schonkeren; Eveline Weerdenburg; Saadou Issifou; Adrian J. F. Luty; Peter G Kremsner; Maria Yazdanbakhsh

BACKGROUND Pregnancy-associated malaria is known to modify fetal immunity. Most previous studies have been cross-sectional in nature and have focused on the priming of acquired immune responses in utero. In this context, the influence of the timing and/or duration of placental infection with Plasmodium falciparum are unknown, and changes to innate immune responses have not been studied extensively. METHODS Pregnant women in Gabon, where P. falciparum infection is endemic, were followed up through monthly clinical and parasitological examinations from the second trimester to delivery. Cells of neonates born to mothers who had acquired P. falciparum infection <or=1 month before delivery had significantly altered interferon-gamma and tumor necrosis factor-alpha responses after stimulation with the Toll-like receptor (TLR) ligands lipopolysaccharide and polyinosine-polycytidylic acid, compared with cells of neonates born either to mothers free of P. falciparum infection or to mothers who were successfully treated for malaria during pregnancy. An independent association between parity and neonatal TLR responsiveness was also discerned in our study. CONCLUSION P. falciparum infection history during pregnancy appears to have a pronounced effect on neonatal innate immune responses. The observed effects may have profound implications for the outcome of newly encountered infections in early life.


PLOS ONE | 2011

Induction of Plasmodium falciparum-Specific CD4+ T Cells and Memory B Cells in Gabonese Children Vaccinated with RTS,S/AS01E and RTS,S/AS02D

Selidji Todagbe Agnandji; Rolf Fendel; Michaël Mestré; Michel Janssens; Johan Vekemans; Jana Held; Ferdinand Gnansounou; Sonja Haertle; Isabel von Glasenapp; Sunny Oyakhirome; Ludovic Mewono; Philippe Moris; Marc Lievens; Marie-Ange Demoitié; Patrice M. Dubois; Tonya Villafana; Erik Jongert; Olivier A; Joe Cohen; Meral Esen; Peter G. Kremsner; Bertrand Lell; Benjamin Mordmüller

The recombinant circumsporozoite protein (CS) based vaccine, RTS,S, confers protection against Plasmodium falciparum infection in controlled challenge trials and in field studies. The RTS,S recombinant antigen has been formulated with two adjuvant systems, AS01 and AS02, which have both been shown to induce strong specific antibody responses and CD4 T cell responses in adults. As infants and young children are particularly susceptible to malaria infection and constitute the main target population for a malaria vaccine, we have evaluated the induction of adaptive immune responses in young children living in malaria endemic regions following vaccination with RTS,S/AS01E and RTS,S/AS02D. Our data show that a CS-specific memory B cell response is induced one month after the second and third vaccine dose and that CS-specific antibodies and memory B cells persist up to 12 months after the last vaccine injection. Both formulations also induced low but significant amounts of CS-specific IL-2+ CD4+ T cells one month after the second and third vaccine dose, upon short-term in vitro stimulation of whole blood cells with peptides covering the entire CS derived sequence in RTS,S. These results provide evidence that both RTS,S/AS01E and RTS,S/AS02D induced adaptive immune responses including antibodies, circulating memory B cells and CD4+ T cells directed against P. falciparum CS protein. Trial Registration ClinicalTrials.gov NCT00307021

Collaboration


Dive into the Selidji Todagbe Agnandji's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Ramharter

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mirjam Groger

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Maria Yazdanbakhsh

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge