Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Selmir Avdic is active.

Publication


Featured researches published by Selmir Avdic.


Journal of Virology | 2009

Virus-Encoded Homologs of Cellular Interleukin-10 and Their Control of Host Immune Function

Barry Slobedman; Peter A. Barry; Juliet V. Spencer; Selmir Avdic; Allison Abendroth

The capacity of viruses to successfully infect the immunocompetent host to cause disease argues in favor of virus-encoded functions that specifically target components of the immune system so as to orchestrate an environment that limits the capacity of the host immune response to clear infection. In this respect, many viruses have evolved to coexist with the host immune system by developing an arsenal of strategies to avoid immune surveillance and elimination from the host. These include viruses which have acquired homologs of cellular cytokines or cytokine receptors as a strategy to limit host immune recognition. Cellular interleukin-10 (IL-10) is a pleiotropic immunomodulatory cytokine produced by a wide variety of cells, including monocytes, macrophages, T and B lymphocytes, dendritic cells (DC), keratinocytes, epithelial cells, and mast cells. The properties of IL-10 have been comprehensively reviewed elsewhere (12, 69, 70, 72, 77) and so will not be covered in detail here, but the key features of this cytokine relate mainly to its capacity to exert potent immunosuppressive functions on the expression of a range of cytokines and chemokines (2, 16, 23), as well as the repression of major histocompatibility complex (MHC) molecules and costimulatory molecules (17, 104) and the maturation and function of DC (69). The immunosuppressive properties of IL-10 are primarily restricted to cells of the myeloid lineage (69). In contrast, IL-10 has been shown to exert a stimulatory effect on B lymphocytes (15, 28, 87), mast cells (99), thymocytes (64), and CD8+ T cells (31, 88, 90), highlighting the cell-type-dependent immunomodulatory properties of this cytokine. The immunomodulatory functions manifested by IL-10 require engagement of this cytokine with its cell surface bound receptor. The IL-10 receptor (IL-10R) consists of two different subunits (IL-10R1 and IL-10R2) (52, 60). IL-10 binds first to IL-10R1 with high affinity, and the resulting intermediate IL-10/IL-10R1 complex then binds with lower affinity to IL-10R2. The resulting active signaling complex induces the JAK/Stat signal transduction pathway (69, 72). In the context of viral pathogenesis, infections with a number of different viruses have been documented to upregulate the expression of IL-10, and in some cases, this upregulation has been shown to enhance infection by suppressing the immune function, suggesting that the far-reaching effects of this cytokine have many advantages for invading pathogens (3, 4, 18, 30, 45, 81, 82, 108, 111). IL-10-like open reading frames (ORF) have been identified by sequence homology in multiple members of the Herpesvirales and Poxviridae, all but one of which infect mammalian hosts (Table ​(Table1).1). The one exception, cyprinid herpesvirus 3, is a member of the Alloherpesviridae family of herpesviruses (order, Herpesvirales), which has the common carp (Cyprinus carpio) as its normal host (1). Otherwise, all of the herpesviruses identified to date as encoding IL-10-like ORF, including human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV), are found only in the Beta- and Gammaherpesvirinae subfamilies of the Herpesviridae. No examples of the Alphaherpesvirinae that encode IL-10 homologs have been identified. Of the identified members of the Herpesviridae that encode IL-10 homologs, all but two, equid herpesvirus 2 and ovine herpesvirus 2 (OvHV2) (85, 96, 97), are confined to primate hosts (Table ​(Table1).1). All of the identified Poxviridae that encode IL-10 infect ruminants, including orf virus ([ORFV] sheep and goats), sheeppox virus ([SPPV] sheep), goatpox virus ([GPV] goats), and lumpy skin disease virus ([LSDV] cattle). The genomes of SPPV, GPV, and LSDV are 96 to 97% identical at the nucleic acid level (48, 101). Another member of the Poxviridae that has monkeys as its normal host, yaba-like disease virus, encodes an ORF (Y134R) that exhibits sequence homology to the IL-10-related cytokines IL-19, IL-20, and IL-24 (57). These viral IL-10 (vIL-10) homologs range in size from 139 to 191 amino acids (aa), bracketing the range in sizes for cellular IL-10 proteins (176 to 180 aa). TABLE 1. Viruses with IL-10-like or IL-10-related ORF The role of virus-encoded IL-10 homologs is likely to provide a tool to enable modulation of the local immune response so as to enhance the capacity to replicate, disseminate, and/or persist in an otherwise immunocompetent individual. In fact, there is emerging evidence that virus-encoded IL-10 homologs function in this capacity in a variety of settings. This review will cover those viruses which have thus far been identified as encoding homologs of IL-10. The similarities of each homolog to the IL-10 of the natural host species will be presented together with their biological functions (where known) and the role they may play in viral pathogenesis and evasion of the host immune response.


Blood | 2009

The role of the human cytomegalovirus UL111A gene in down-regulating CD4+ T-cell recognition of latently infected cells: implications for virus elimination during latency.

Allen K. L. Cheung; David Gottlieb; Bodo Plachter; Sandra Pepperl-Klindworth; Selmir Avdic; Anthony L. Cunningham; Allison Abendroth; Barry Slobedman

The capacity of human cytomegalovirus (HCMV) to establish and maintain a latent infection from which it can later reactivate ensures its widespread distribution in the population, but the mechanisms enabling maintenance of latency in the face of a robust immune system are poorly understood. We examined the role of the HCMV UL111A gene, which encodes homologs of the immunosuppressive cytokine interleukin-10 in the context of latent infection of myeloid progenitor cells. A UL111A deletion virus was able to establish, maintain, and reactivate from experimental latency in a manner comparable with parental virus, but major histocompatibility complex class II levels increased significantly on the surfaces of cells infected with the deletion virus. Importantly, there was an increase in both allogeneic and autologous peripheral blood mononuclear cells and CD4(+) T-cell responses to UL111A deletion virus-infected myeloid progenitors, indicating that loss of the capacity to express viral interleukin-10 during latency results in latently infected cells becoming more readily recognizable by a critical arm of the immune response. The detection of a viral gene that suppresses CD4(+) T-cell recognition of latently infected cells identifies an immune evasion strategy that probably enhances the capacity of HCMV to persist in a latent state within the human host.


Future Microbiology | 2010

Human cytomegalovirus latent infection and associated viral gene expression

Barry Slobedman; John Z. Cao; Selmir Avdic; Bradley Webster; Samantha McAllery; Allen Cheung; Joanne Cg Tan; Allison Abendroth

Human cytomegalovirus (HCMV) is a clinically important and ubiquitous herpesvirus. Following primary productive infection the virus is not completely eliminated from the host, but instead establishes a lifelong latent infection without detectable virus production, from where it can reactivate at a later stage to generate new infectious virus. Reactivated HCMV often results in life-threatening disease in immunocompromised individuals, particularly allogeneic stem cell and solid organ transplant recipients, where it remains one of the most difficult opportunistic pathogens that complicate the care of these patients. The ability of HCMV to establish and reactivate from latency is central to its success as a human pathogen, yet latency remains very poorly understood. This article will cover several aspects of HCMV latency, with a focus on current understanding of viral gene expression and functions during this phase of infection.


Viruses | 2012

Human Cytomegalovirus Encoded Homologs of Cytokines, Chemokines and their Receptors: Roles in Immunomodulation

Brian P. McSharry; Selmir Avdic; Barry Slobedman

Human cytomegalovirus (HCMV), the largest human herpesvirus, infects a majority of the world’s population. Like all herpesviruses, following primary productive infection, HCMV establishes a life-long latent infection, from which it can reactivate years later to produce new, infectious virus. Despite the presence of a massive and sustained anti-HCMV immune response, productively infected individuals can shed virus for extended periods of time, and once latent infection is established, it is never cleared from the host. It has been proposed that HCMV must therefore encode functions which help to evade immune mediated clearance during productive virus replication and latency. Molecular mimicry is a strategy used by many viruses to subvert and regulate anti-viral immunity and HCMV has hijacked/developed a range of functions that imitate host encoded immunomodulatory proteins. This review will focus on the HCMV encoded homologs of cellular cytokines/chemokines and their receptors, with an emphasis on how these virus encoded homologs may facilitate viral evasion of immune clearance.


Journal of Virology | 2011

Viral Interleukin-10 Expressed by Human Cytomegalovirus during the Latent Phase of Infection Modulates Latently Infected Myeloid Cell Differentiation†

Selmir Avdic; John Z. Cao; Allen Cheung; Allison Abendroth; Barry Slobedman

ABSTRACT The human cytomegalovirus UL111A gene is expressed during latent and productive infections, and it codes for homologs of interleukin-10 (IL-10). We examined whether viral IL-10 expressed during latency altered differentiation of latently infected myeloid progenitors. In comparison to infection with parental virus or mock infection, latent infection with a virus in which the gene encoding viral IL-10 has been deleted upregulated cytokines associated with dendritic cell (DC) formation and increased the proportion of myeloid DCs. These data demonstrate that viral IL-10 restricts the ability of latently infected myeloid progenitors to differentiate into DCs and identifies an immunomodulatory role for viral IL-10 which may limit the hosts ability to clear latent virus.


Journal of Virology | 2013

Human Cytomegalovirus Interleukin-10 Polarizes Monocytes toward a Deactivated M2c Phenotype To Repress Host Immune Responses

Selmir Avdic; John Z. Cao; Brian P. McSharry; Leighton Clancy; Rebecca Brown; Megan Steain; David Gottlieb; Allison Abendroth; Barry Slobedman

ABSTRACT Several human cytomegalovirus (HCMV) genes encode products that modulate cellular functions in a manner likely to enhance viral pathogenesis. This includes UL111A, which encodes homologs of human interleukin-10 (hIL-10). Depending upon signals received, monocytes and macrophages become polarized to either classically activated (M1 proinflammatory) or alternatively activated (M2 anti-inflammatory) subsets. Skewing of polarization toward an M2 subset may benefit the virus by limiting the proinflammatory responses to infection, and so we determined whether HCMV-encoded viral IL-10 influenced monocyte polarization. Recombinant viral IL-10 protein polarized CD14+ monocytes toward an anti-inflammatory M2 subset with an M2c phenotype, as demonstrated by high expression of CD163 and CD14 and suppression of major histocompatibility complex (MHC) class II. Significantly, in the context of productive HCMV infection, viral IL-10 produced by infected cells polarized uninfected monocytes toward an M2c phenotype. We also assessed the impact of viral IL-10 on heme oxygenase 1 (HO-1), which is an enzyme linked with suppression of inflammatory responses. Polarization of monocytes by viral IL-10 resulted in upregulation of HO-1, and inhibition of HO-1 function resulted in a loss of capacity of viral IL-10 to suppress tumor necrosis factor alpha (TNF-α) and IL-1β, implicating HO-1 in viral IL-10-induced suppression of proinflammatory cytokines by M2c monocytes. In addition, a functional consequence of monocytes polarized with viral IL-10 was a decreased capacity to activate CD4+ T cells. This study identifies a novel role for viral IL-10 in driving M2c polarization, which may limit virus clearance by restricting proinflammatory and CD4+ T cell responses at sites of infection.


Journal of Virology | 2014

Latency-Associated Viral Interleukin-10 (IL-10) Encoded by Human Cytomegalovirus Modulates Cellular IL-10 and CCL8 Secretion during Latent Infection through Changes in the Cellular MicroRNA hsa-miR-92a

Emma Poole; Selmir Avdic; Jemima Hodkinson; Sarah E. Jackson; Mark R. Wills; Barry Slobedman; John Sinclair

ABSTRACT The UL111A gene of human cytomegalovirus encodes a viral homologue of the cellular immunomodulatory cytokine interleukin 10 (cIL-10), which, due to alternative splicing, results in expression of two isoforms designated LAcmvIL-10 (expressed during both lytic and latent infection) and cmvIL-10 (identified only during lytic infection). We have analyzed the functions of LAcmvIL-10 during latent infection of primary myeloid progenitor cells and found that LAcmvIL-10 is responsible, at least in part, for the known increase in secretion of cellular IL-10 and CCL8 in the secretomes of latently infected cells. This latency-associated increase in CCL8 expression results from a concomitant LAcmvIL-10-mediated suppression of the expression of the cellular microRNA (miRNA) hsa-miR-92a, which targets CCL8 directly. Taking the data together, we show that the previously observed downregulation of hsa-miR-92a and upregulation of CCL8 during HCMV latent infection of myeloid cells are intimately linked via the latency-associated expression of LAcmvIL-10. IMPORTANCE HCMV latency causes significant morbidity and mortality in immunocompromised individuals, yet HCMV is carried silently (latently) in 50 to 90% of the population. Understanding how HCMV maintains infection for the lifetime of an infected individual is critical for the treatment of immunocompromised individuals suffering with disease as a result of HCMV. In this study, we analyze one of the proteins that are expressed during the “latent” phase of HCMV, LAcmvIL-10, and find that the expression of the gene modulates the microenvironment of the infected cell, leading to evasion of the immune system.


Journal of Virology | 2016

Human Cytomegalovirus-Encoded Human Interleukin-10 (IL-10) Homolog Amplifies Its Immunomodulatory Potential by Upregulating Human IL-10 in Monocytes

Selmir Avdic; Brian P. McSharry; Megan Steain; Emma Poole; John Sinclair; Allison Abendroth; Barry Slobedman

ABSTRACT The human cytomegalovirus (HCMV) gene UL111A encodes cytomegalovirus-encoded human interleukin-10 (cmvIL-10), a homolog of the potent immunomodulatory cytokine human interleukin 10 (hIL-10). This viral homolog exhibits a range of immunomodulatory functions, including suppression of proinflammatory cytokine production and dendritic cell (DC) maturation, as well as inhibition of major histocompatibility complex (MHC) class I and class II. Here, we present data showing that cmvIL-10 upregulates hIL-10, and we identify CD14+ monocytes and monocyte-derived macrophages and DCs as major sources of hIL-10 secretion in response to cmvIL-10. Monocyte activation was not a prerequisite for cmvIL-10-mediated upregulation of hIL-10, which was dose dependent and controlled at the transcriptional level. Furthermore, cmvIL-10 upregulated expression of tumor progression locus 2 (TPL2), which is a regulator of the positive hIL-10 feedback loop, whereas expression of a negative regulator of the hIL-10 feedback loop, dual-specificity phosphatase 1 (DUSP1), remained unchanged. Engagement of the hIL-10 receptor (hIL-10R) by cmvIL-10 led to upregulation of heme oxygenase 1 (HO-1), an enzyme linked with suppression of inflammatory responses, and this upregulation was required for cmvIL-10-mediated upregulation of hIL-10. We also demonstrate an important role for both phosphatidylinositol 3-kinase (PI3K) and STAT3 in the upregulation of HO-1 and hIL-10 by cmvIL-10. In addition to upregulating hIL-10, cmvIL-10 could exert a direct immunomodulatory function, as demonstrated by its capacity to upregulate expression of cell surface CD163 when hIL-10 was neutralized. This study identifies a mechanistic basis for cmvIL-10 function, including the capacity of this viral cytokine to potentially amplify its immunosuppressive impact by upregulating hIL-10 expression. IMPORTANCE Human cytomegalovirus (HCMV) is a large, double-stranded DNA virus that causes significant human disease, particularly in the congenital setting and in solid-organ and hematopoietic stem cell transplant patients. A prominent feature of HCMV is the wide range of viral gene products that it encodes which function to modulate host defenses. One of these is cmvIL-10, which is a homolog of the potent immunomodulatory cytokine human interleukin 10 (hIL-10). In this study, we report that, in addition to exerting a direct biological impact, cmvIL-10 upregulates the expression of hIL-10 by primary blood-derived monocytes and that it does so by modulating existing cellular pathways. This capacity of cmvIL-10 to upregulate hIL-10 represents a mechanism by which HCMV may amplify its immunomodulatory impact during infection.


Journal of Virology | 2011

Inhibition of 2′,5′-oligoadenylate synthetase expression and function by the human cytomegalovirus ORF94 gene product

Joanne C. G. Tan; Selmir Avdic; John Z. Cao; Edward S. Mocarski; Kirsten Lofgren White; Allison Abendroth; Barry Slobedman

ABSTRACT The human cytomegalovirus (HCMV) ORF94 gene product has been reported to be expressed during both productive and latent phases of infection, although its function is unknown. We report that expression of pORF94 leads to decreased 2′,5′-oligoadenylate synthetase (OAS) expression in transfected cells with and without interferon stimulation. Furthermore, the functional activity of OAS was inhibited by pORF94. Finally, we present evidence of OAS modulation by pORF94 during productive HCMV infection of human fibroblasts. This study provides the first identification of a function for pORF94 and identifies an additional means by which HCMV may limit a critical host cell antiviral response.


Frontiers in Microbiology | 2014

Modulation of dendritic cell functions by viral IL-10 encoded by human cytomegalovirus.

Selmir Avdic; Brian P. McSharry; Barry Slobedman

Human cytomegalovirus (HCMV), a clinically important β-herpesvirus, is a master of evasion and modulation of the host immune system, including inhibition of a number of dendritic cell (DC) functions. DCs play a central role in co-ordination of the immune response against pathogens and any disturbance of DCs functions can result in a cascade effect on a range of immune cells. Recently, the HCMV gene UL111A, which encodes viral homologs of human interleukin 10, has been identified as a strong suppressor of a number of DCs functions. In this mini review, we focus on HCMV-encoded viral IL-10-mediated inhibitory effects on DCs and implications for the development of an effective HCMV vaccine.

Collaboration


Dive into the Selmir Avdic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allen Cheung

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juliet V. Spencer

University of San Francisco

View shared research outputs
Top Co-Authors

Avatar

Emma Poole

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge