Selvakumar Edwardraja
Pusan National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Selvakumar Edwardraja.
Biotechnology and Bioengineering | 2010
Selvakumar Edwardraja; Rameshkumar Neelamegam; Vijayaraj Ramadoss; Subramanian Venkatesan; Sun-Gu Lee
Typically, single chain Fv antibodies are unable to fold properly under a reducing cytoplasm because of the reduction of disulfide bonds. The inability to fold limits both the production of the functional scFvs and their targeting against antigens, which are generally executed in a reducing cytoplasm. In this study, the target scFv CDR was grafted with stable human consensus framework sequences, which enabled the generation of a foldable scFv in a reducing cytoplasm of Escherichia coli. Additionally, the structural features affecting the folding efficiency of the engineered scFv were identified by analyzing the predicted structure. An anti‐c‐Met scFv, which was a cytoplasmic non‐foldable protein, was redesigned as the model system. This study confirmed that the engineered anti‐c‐Met scFv was folded into its native form in the cytoplasm of E. coli BL21(DE3) without a significant loss in the specific binding activity against c‐Met antigen. The structures of the wild‐type anti‐c‐Met scFv and the engineered scFv were predicted using homology modeling. A comparative analysis based on the sequence and structure showed that the hydrophobicity of 12 solvent exposed residues decreased, and two newly formed salt bridges might have improved the folding efficiency of the engineered scFv under the reducing condition. Biotechnol. Bioeng. 2010; 106: 367–375.
Biotechnology and Bioprocess Engineering | 2014
Philah Lee; Subramanian Mohan Raj; Shengfang Zhou; Somasundar Ashok; Selvakumar Edwardraja; Sunghoon Park
This study examined the role and physiological relevance of 3-hydroxyisobutyrate dehydrogenase-I (3HIBDHI) of Pseudomonas denitrificans ATCC 13867 in the degradation of 3-hydroxypropionic acid (3-HP) during 3-HP production. The gene encoding 3HIBDH-I of P. denitrificans ATCC 13867 was cloned and expressed in Escherichia coli BL21 (DE3). The recombinant 3HIBDH-I was then purified on a Ni-NTA-HP column and characterized for its choice of substrates, cofactors, metals, reductants, and the optimal temperature and pH. The recombinant 3HIBDH-I showed a high catalytic constant (kcat/Km) of 604.1 ± 71.1 mM/S on (S)-3-hydroxyisobutyrate, but no detectable activity on (R)-3-hydroxyisobutyrate. 3HIBDH-I preferred NAD+ over NADP+ as a cofactor for its catalytic activity. The kcat/Km determined for 3-HP was 15.40 ± 1.43 mM/S in the presence of NAD+ at 37°C and pH 9.0. In addition to (S)-3-hydroxyisobutyrate and 3-HP, 3HIBDH-I utilized l-serine, methyl-d,l-serine, and methyl-(S)-(+)-3-hydroxy-2-methylpropionate; on the other hand, the kcat/Km values determined for these substrates were less than 5.0mM/S. Ethylenediaminetetraacetic acid, 2-mercaptoethanol, dithiothreitol and Mn2+ increased the activity of 3HIBDHI significantly, whereas the presence of Fe2+, Hg2+ and Ag+ in the reaction mixture at 1.0 mM completely inhibited its activity. This study revealed the characteristics of 3HIBDH-I and its significance in 3-HP degradation.
Biochimica et Biophysica Acta | 2016
Tien Le Olson; Eduardo Espiritu; Selvakumar Edwardraja; Chad R. Simmons; J. C. Williams; Giovanna Ghirlanda; James P. Allen
A compelling target for the design of electron transfer proteins with novel cofactors is to create a model for the oxygen-evolving complex, a Mn4Ca cluster, of photosystem II. A mononuclear Mn cofactor can be added to the bacterial reaction center, but the addition of multiple metal centers is constrained by the native protein architecture. Alternatively, metal centers can be incorporated into artificial proteins. Designs for the addition of dinuclear metal centers to four-helix bundles resulted in three artificial proteins with ligands for one, two, or three dinuclear metal centers able to bind Mn. The three-dimensional structure determined by X-ray crystallography of one of the Mn-proteins confirmed the design features and revealed details concerning coordination of the Mn center. Electron transfer between these artificial Mn-proteins and bacterial reaction centers was investigated using optical spectroscopy. After formation of a light-induced, charge-separated state, the experiments showed that the Mn-proteins can donate an electron to the oxidized bacteriochlorophyll dimer of modified reaction centers, with the Mn-proteins having additional metal centers being more effective at this electron transfer reaction. Modeling of the structure of the Mn-protein docked to the reaction center showed that the artificial protein likely binds on the periplasmic surface similarly to cytochrome c2, the natural secondary donor. Combining reaction centers with exogenous artificial proteins provides the opportunity to create ligands and investigate the influence of inhomogeneous protein environments on multinuclear redox-active metal centers. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Bioconjugate Chemistry | 2014
Avinash Muppidi; Kenichiro Doi; Selvakumar Edwardraja; Surya V. S. R. K. Pulavarti; Thomas Szyperski; Hong-Gang Wang; Qing Lin
BH3 peptides are key mediators of apoptosis and have served as the lead structures for the development of anticancer therapeutics. Previously, we reported the application of a simple cysteine-based side chain cross-linking chemistry to NoxaBH3 peptides that led to the generation of the cross-linked NoxaBH3 peptides with increased cell permeability and higher inhibitory activity against Mcl-1 (Muppidi, A., Doi, K., Edwardraja, S., Drake, E. J., Gulick, A. M., Wang, H.-G., Lin, Q. (2012) J. Am. Chem. Soc.134, 1473422920569). To deliver cross-linked NoxaBH3 peptides selectively into cancer cells for enhanced efficacy and reduced systemic toxicity, here we report the conjugation of the NoxaBH3 peptides with the extracellular ubiquitin, a recently identified endogenous ligand for CXCR4, a chemokine receptor overexpressed in cancer cells. The resulting ubiquitin-NoxaBH3 peptide conjugates showed increased inhibitory activity against Mcl-1 and selective killing of the CXCR4-expressing cancer cells. The successful delivery of the NoxaBH3 peptides by ubiquitin into cancer cells suggests that the ubiquitin/CXCR4 axis may serve as a general route for the targeted delivery of anticancer agents.
Journal of Physical Chemistry B | 2015
Marco Flores; Tien Le Olson; Dong Wang; Selvakumar Edwardraja; Sandip S. Shinde; J. C. Williams; Giovanna Ghirlanda; James P. Allen
The design of binding sites for divalent metals in artificial proteins is a productive platform for examining the characteristics of metal-ligand interactions. In this report, we investigate the spectroscopic properties of small peptides and four-helix bundles that bind Cu(II). Three small peptides, consisting of 15 amino acid residues, were designed to have two arms, each containing a metal-binding site comprised of different combinations of imidazole and carboxylate side chains. Two four-helix bundles each had a binding site for a central dinuclear metal cofactor, with one design incorporating additional potential metal ligands at two identical sites. The small peptides displayed pH-dependent, metal-induced changes in the circular dichroism spectra, consistent with large changes in the secondary structure upon metal binding, while the spectra of the four-helix bundles showed a predominant α-helix content but only small structural changes upon metal binding. Electron paramagnetic resonance spectra were measured at X-band revealing classic Cu(II) axial patterns with hyperfine coupling peaks for the small peptides and four-helix bundles exhibiting a range of values that were related to the specific chemical natures of the ligands. The variety of electronic structures allow us to define the distinctive environment of each metal-binding site in these artificial systems, including the designed additional binding sites in one of the four-helix bundles.
PLOS ONE | 2013
Shengfang Zhou; Subramanian Mohan Raj; Somasundar Ashok; Selvakumar Edwardraja; Sun Gu Lee; Sunghoon Park
The gene encoding an NAD+-dependent, 3-hydroxyisobutyrate dehydrogenase (3HIBDH-IV) from Pseudomonas denitrificans ATCC 13867 was cloned and expressed in Escherichia coli BL 21 (DE3) and characterized to understand its physiological relevance in the degradation of 3-hydroxypropionic acid (3-HP). The deduced amino acid sequence showed high similarity to other 3-hydroxyisobutyrate dehydrogenase isozymes (3HIBDHs) of P. denitrificans ATCC 13867. A comparison of 3HIBDH-IV with its relevant enzymes along with molecular docking studies suggested that Lys171, Asn175 and Gly123 are important for its catalytic function on 3-hydroxyacids. The recombinant 3HIBDH-IV was purified to homogeneity utilizing a Ni-NTA-HP resin column in high yield. 3HIBDH-IV was very specific to (S)-3-hydroxyisobutyrate, but also catalyzed the oxidation of 3-HP to malonate semialdehyde. The specific activity and half-saturation constant (K m) for 3-HP at 30°C and pH 9.0 were determined to be 17 U/mg protein and 1.0 mM, respectively. Heavy metals, such as Ag+ and Hg2+, completely inhibited the 3HIBDH-IV activity, whereas dithiothreitol, 2-mercaptoethanol and ethylenediaminetetraacetic acid increased its activity 1.5–1.8-fold. This paper reports the characteristics of 3HIBDH-IV as well as its probable role in 3-HP degradation.
Biochimica et Biophysica Acta | 2017
Tien Le Olson; Eduardo Espiritu; Selvakumar Edwardraja; Elizabeth Canarie; Marco Flores; J. C. Williams; Giovanna Ghirlanda; James P. Allen
To better understand metalloproteins with Mn-clusters, we have designed artificial four-helix bundles to have one, two, or three dinuclear metal centers able to bind Mn(II). Circular dichroism measurements showed that the Mn-proteins have substantial α-helix content, and analysis of electron paramagnetic resonance spectra is consistent with the designed number of bound Mn-clusters. The Mn-proteins were shown to catalyze the conversion of hydrogen peroxide into molecular oxygen. The loss of hydrogen peroxide was dependent upon the concentration of protein with bound Mn, with the proteins containing multiple Mn-clusters showing greater activity. Using an oxygen sensor, the oxygen concentration was found to increase with a rate up to 0.4μM/min, which was dependent upon the concentrations of hydrogen peroxide and the Mn-protein. In addition, the Mn-proteins were shown to serve as electron donors to bacterial reaction centers using optical spectroscopy. Similar binding of the Mn-proteins to reaction centers was observed with an average dissociation constant of 2.3μM. The Mn-proteins with three metal centers were more effective at this electron transfer reaction than the Mn-proteins with one or two metal centers. Thus, multiple Mn-clusters can be incorporated into four-helix bundles with the capability of performing catalysis and electron transfer to a natural protein.
African Journal of Biotechnology | 2012
Nagasundarapandian Soundrarajan; Selvakumar Edwardraja; Sun-Gu Lee; Hyungdon Yun; Niraikulam Ayyadurai
Protein sequences might have been evolved against different environmental pressures, which results in non-optimum properties in their stability, activity and folding efficiency. Directed evolution and consensus-based engineering of proteins are the protein engineering principles for the re-evolution of such natural proteins exhibiting non-optimal properties. Here, we propose an approach to improve the physical properties of target protein by engineering protein with new methionine residues. Our aim of this study was to investigate whether the physical property of protein can be improved by altering the negative effect caused by the introduction of additional methionine residue in the protein. First, we attempted to perform combinatorial mutagenesis of methionine residues of green fluorescent protein (GFP) using the consensus amino acids of conserved sequences. Each methionine residue in the internal sequence of GFP was combinatorially mutated by methionine or amino acid showing the highest frequencies in conserved sequences (I for M78, F for M88, Y for M153, V for M218, K for M233), and the mutants showing fluorescence were selected. Among the variants, the mutant of M218K showed an enhanced soluble expression in Escherichia coli . Our results indicate that it is possible to engineer protein by mutating methionine residues, specifically. We expect that the proposed approach can be exploited to enhance the expression of target protein in soluble form with avoiding the intensive labor of random mutagenesis and screening.
Korean Journal of Chemical Engineering | 2018
Ganapathiraman Munussami; Sriram Sokalingam; Selvakumar Edwardraja; Jung Rae Kim; Sungwook Chung; Sun-Gu Lee
Cystatins and lipocalins have attracted considerable interest for their potential applications in non-immunoglobulin protein scaffold engineering. In the present study, their potential homologs were screened computationally from non-redundant protein sequence database based on the overlapped conserved residues (OCR)-fingerprints, which can detect the protein family with low sequence identity, such as cystatins and lipocalins. Two types of OCR-fingerprints for each family were designed and showed very high detection efficiency (>90%). The protein sequence database was scanned by the fingerprints, which yielded the hypothetical sequences for cystatins and lipocalins. The hypothetical sequences were validated further based on their sequence motifs and structural models, which allowed an identification of the potential homologs of cystatins and lipocalins.
ACS Synthetic Biology | 2017
Selvakumar Edwardraja; Andreas Eichinger; Ina Theobald; Carina Andrea Sommer; Andreas J. Reichert; Arne Skerra
The molecular recognition of carbohydrates plays a fundamental role in many biological processes. However, the development of carbohydrate-binding reagents for biomedical research and use poses a challenge due to the generally poor affinity of proteins toward sugars in aqueous solution. Here, we describe the effective molecular recognition of pyranose monosaccharides (in particular, galactose and mannose) by a rationally designed protein receptor based on the human lipocalin scaffold (Anticalin). Complexation relies on reversible covalent cis-diol boronate diester formation with a genetically encoded l-boronophenylalanine (Bpa) residue which was incorporated as a non-natural amino acid at a sterically permissive position in the ligand pocket of the Anticalin, as confirmed by X-ray crystallography. Compared with the metal-ion and/or avidity-dependent oligovalent lectins that prevail in nature, our approach offers a novel and promising route to generate tight sugar-binding reagents both as research reagents and for biomedical applications.