Selwin K. Wu
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Selwin K. Wu.
Current Biology | 2014
Joanne M. Leerberg; Guillermo A. Gomez; Suzie Verma; Elliott Moussa; Selwin K. Wu; Rashmi Priya; Brenton D. Hoffman; Carsten Grashoff; Martin A. Schwartz; Alpha S. Yap
BACKGROUND Actomyosin-based contractility acts on cadherin junctions to support tissue integrity and morphogenesis. The actomyosin apparatus of the epithelial zonula adherens (ZA) is built by coordinating junctional actin assembly with Myosin II activation. However, the physical interaction between Myosin and actin filaments that is necessary for contractility can induce actin filament turnover, potentially compromising the contractile apparatus itself. RESULTS We now identify tension-sensitive actin assembly as one cellular solution to this design paradox. We show that junctional actin assembly is maintained by contractility in established junctions and increases when contractility is stimulated. The underlying mechanism entails the tension-sensitive recruitment of vinculin to the ZA. Vinculin, in turn, directly recruits Mena/VASP proteins to support junctional actin assembly. By combining strategies that uncouple Mena/VASP from vinculin or ectopically target Mena/VASP to junctions, we show that tension-sensitive actin assembly is necessary for junctional integrity and effective contractility at the ZA. CONCLUSIONS We conclude that tension-sensitive regulation of actin assembly represents a mechanism for epithelial cells to resolve potential design contradictions that are inherent in the way that the junctional actomyosin system is assembled. This emphasizes that maintenance and regulation of the actin scaffolds themselves influence how cells generate contractile tension.
Journal of Biological Chemistry | 2014
Siew Ping Han; Yann Gambin; Guillermo A. Gomez; Suzie Verma; Nichole Giles; Magdalene Michael; Selwin K. Wu; Zhong Guo; Wayne A. Johnston; Emma Sierecki; Robert G. Parton; Kirill Alexandrov; Alpha S. Yap
Background: Productive epithelial interactions require actin filament assembly at E-cadherin adhesions. Results: Cortactin localizes to the zonula adherens through interactions with E-cadherin and N-WASP; there it recruits Arp2/3 and WAVE2 by separate mechanisms to support actin nucleation. Conclusion: Cortactin acts as a coincident scaffold. Significance: Cortactin can regulate the dynamic integration of cadherin adhesion with the actin cytoskeleton. Cadherin junctions arise from the integrated action of cell adhesion, signaling, and the cytoskeleton. At the zonula adherens (ZA), a WAVE2-Arp2/3 actin nucleation apparatus is necessary for junctional tension and integrity. But how this is coordinated with cadherin adhesion is not known. We now identify cortactin as a key scaffold for actin regulation at the ZA, which localizes to the ZA through influences from both E-cadherin and N-WASP. Using cell-free protein expression and fluorescent single molecule coincidence assays, we demonstrate that cortactin binds directly to the cadherin cytoplasmic tail. However, its concentration with cadherin at the apical ZA also requires N-WASP. Cortactin is known to bind Arp2/3 directly (Weed, S. A., Karginov, A. V., Schafer, D. A., Weaver, A. M., Kinley, A. W., Cooper, J. A., and Parsons, J. T. (2000) J. Cell Biol. 151, 29–40). We further show that cortactin can directly bind WAVE2, as well as Arp2/3, and both these interactions are necessary for actin assembly at the ZA. We propose that cortactin serves as a platform that integrates regulators of junctional actin assembly at the ZA.
Current Biology | 2011
Sabine Mangold; Selwin K. Wu; Suzanne J. Norwood; Brett M. Collins; Nicholas A. Hamilton; Peter Thorn; Alpha S. Yap
Cadherin adhesion molecules function in close cooperation with the actin cytoskeleton. At the zonula adherens (ZA) of polarized epithelial cells, E-cadherin adhesion induces the cortical recruitment of many key cytoskeletal regulators, which act in a dynamic integrated system to regulate junctional integrity and cell-cell interactions. This capacity for the cytoskeleton to support the ZA carries the implication that regulators of the junctional cytoskeleton might also be targeted to perturb junctional integrity. In this report, we now provide evidence for this hypothesis. We show that hepatocyte growth factor (HGF), which is well-known to disrupt cell-cell interactions, acutely perturbs ZA integrity much more rapidly than generally appreciated. This is accompanied by significant loss of junctional F-actin, a process that reflects loss of filament anchorage at the junctions. We demonstrate that this involves uncoupling of the unconventional motor myosin VI from junctional E-cadherin, a novel effect of HGF that is mediated by intracellular calcium. We conclude that regulators of the junctional cytoskeleton are likely to be major targets for cadherin junctions to be acutely modulated in development and perturbed in disease.
PLOS ONE | 2011
Michael Smutny; Selwin K. Wu; Guillermo A. Gomez; Sabine Mangold; Alpha S. Yap; Nicholas A. Hamilton
The zonula adherens (ZA) of epithelial cells is a site of cell-cell adhesion where cellular forces are exerted and resisted. Increasing evidence indicates that E-cadherin adhesion molecules at the ZA serve to sense force applied on the junctions and coordinate cytoskeletal responses to those forces. Efforts to understand the role that cadherins play in mechanotransduction have been limited by the lack of assays to measure the impact of forces on the ZA. In this study we used 4D imaging of GFP-tagged E-cadherin to analyse the movement of the ZA. Junctions in confluent epithelial monolayers displayed prominent movements oriented orthogonal (perpendicular) to the ZA itself. Two components were identified in these movements: a relatively slow unidirectional (translational) component that could be readily fitted by least-squares regression analysis, upon which were superimposed more rapid oscillatory movements. Myosin IIB was a dominant factor responsible for driving the unilateral translational movements. In contrast, frequency spectrum analysis revealed that depletion of Myosin IIA increased the power of the oscillatory movements. This implies that Myosin IIA may serve to dampen oscillatory movements of the ZA. This extends our recent analysis of Myosin II at the ZA to demonstrate that Myosin IIA and Myosin IIB make distinct contributions to junctional movement at the ZA.
Molecular Biology of the Cell | 2015
Guillermo A. Gomez; Robert W. McLachlan; Selwin K. Wu; Benjamin J. Caldwell; Elliott Moussa; Suzie Verma; Michele Bastiani; Rashmi Priya; Robert G. Parton; Katharina Gaus; Jan Sap; Alpha S. Yap
The role of myosin IIB in junctional contractility and its mode of regulation are not well understood. It is demonstrated that junctional recruitment of myosin IIB requires the activation of a receptor-type protein tyrosine phosphatase alpha–Src family kinase–Rap1 pathway. This reinforces the concept that E-cadherin–based signaling recruits distinct myosin II paralogues to generate contractile tension.
Cell Communication and Adhesion | 2013
Selwin K. Wu; Alpha S. Yap
Abstract Cadherin adhesion receptors are fundamental determinants of tissue organization in health and disease. Increasingly, we have come to appreciate that classical cadherins exert their biological actions through active cooperation with the contractile actin cytoskeleton. Rather than being passive resistors of detachment forces, cadherins can regulate the assembly and mechanics of the contractile apparatus itself. Moreover, coordinate spatial patterning of adhesion and contractility is emerging as a determinant of morphogenesis. Here we review recent developments in cadherins and actin cytoskeleton cooperativity, by focusing on E-cadherin adhesive patterning in the epithelia. Next, we discuss the underlying principles of cellular rearrangement during Drosophila germband extension and epithelial cell extrusion, as models of how planar and apical–lateral patterns of contractility organize tissue architecture.
Human Molecular Genetics | 2015
Rebecca Greenlees; Marija Mihelec; Saira Yousoof; Daniel Speidel; Selwin K. Wu; Silke Rinkwitz; Ivan Prokudin; Rahat Perveen; Anson Cheng; Alan Ma; Benjamin M. Nash; Rachel L. Gillespie; David A.F. Loebel; Jill Clayton-Smith; I. Christopher Lloyd; John Grigg; Patrick P.L. Tam; Alpha S. Yap; Thomas S. Becker; Graeme C.M. Black; Elena V. Semina; Robyn V. Jamieson
Correct morphogenesis and differentiation are critical in development and maintenance of the lens, which is a classic model system for epithelial development and disease. Through germline genomic analyses in patients with lens and eye abnormalities, we discovered functional mutations in the Signal Induced Proliferation Associated 1 Like 3 (SIPA1L3) gene, which encodes a previously uncharacterized member of the Signal Induced Proliferation Associated 1 (SIPA1 or SPA1) family, with a role in Rap1 signalling. Patient 1, with a de novo balanced translocation, 46,XY,t(2;19)(q37.3;q13.1), had lens and ocular anterior segment abnormalities. Breakpoint mapping revealed transection of SIPA1L3 at 19q13.1 and reduced SIPA1L3 expression in patient lymphoblasts. SIPA1L3 downregulation in 3D cell culture revealed morphogenetic and cell polarity abnormalities. Decreased expression of Sipa1l3 in zebrafish and mouse caused severe lens and eye abnormalities. Sipa1l3(-/-) mice showed disrupted epithelial cell organization and polarity and, notably, abnormal epithelial to mesenchymal transition in the lens. Patient 2 with cataracts was heterozygous for a missense variant in SIPA1L3, c.442G>T, p.Asp148Tyr. Examination of the p.Asp148Tyr mutation in an epithelial cell line showed abnormal clustering of actin stress fibres and decreased formation of adherens junctions. Our findings show that abnormalities of SIPA1L3 in human, zebrafish and mouse contribute to lens and eye defects, and we identify a critical role for SIPA1L3 in epithelial cell morphogenesis, polarity, adhesion and cytoskeletal organization.
European Journal of Cell Biology | 2014
Selwin K. Wu; Srikanth Budnar; Alpha S. Yap; Guillermo A. Gomez
The physical properties of cells reflect how the structure and dynamics of the actomyosin cortex are coupled to the plasma membrane. In epithelia, adhesive E-cadherin clusters associate with the cell cortex to assemble the junctional actomyosin that participates in epithelial morphogenesis. E-cadherin is present not only at the apical zonula adherens (ZA), but also distributed throughout the lateral adherens junction (LAJ) below the ZA. However, the organizational dynamics of the actomyosin network at the LAJs remains elusive. To address this, we used quantitative real-time imaging to characterize the dynamics of actomyosin contractility at lateral cadherin contacts. Here, we report that contractility is coordinated into smaller actomyosin rings that link cadherin clusters together within the larger cortical network at the lateral junctions. We conclude that Myosin II activity determines the contractility of actomyosin cables between cadherin clusters to propagate pulsatility across lateral cell-cell contacts.
Biophysical Journal | 2014
Thomas Moore; Selwin K. Wu; Magdalene Michael; Alpha S. Yap; Guillermo A. Gomez; Zoltán Neufeld
The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells.
Cell Cycle | 2015
Selwin K. Wu; Anne Karine Lagendijk; Benjamin M. Hogan; Guillermo A. Gomez; Alpha S. Yap
Cellular contractility regulates tissue cohesion and morphogenesis. In epithelia, E-cadherin adhesion couples the contractile cortices of neighboring cells together to produce tension at junctions that can be transmitted across the epithelium in a planar fashion. We have recently demonstrated that contractility is also patterned in the apical-lateral axis within epithelial junctions. Our findings highlight the role that cytoskeletal regulation plays in controlling the levels of intra-junctional tension. Of note, dysregulation of this apicolateral pattern of tension can drive oncogenic cell extrusion. In this article, we provide a detailed description of the actomyosin cytoskeleton organization during oncogenic extrusion and discuss the implications of cell extrusion in cancer.