Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Semi Ben Harrabi is active.

Publication


Featured researches published by Semi Ben Harrabi.


International Journal of Radiation Oncology Biology Physics | 2014

Glioblastoma Recurrence Patterns After Radiation Therapy With Regard to the Subventricular Zone

Sebastian Adeberg; Laila König; Tilman Bostel; Semi Ben Harrabi; Thomas Welzel; Jürgen Debus; Stephanie E. Combs

PURPOSE We evaluated the influence of tumor location and tumor spread in primary glioblastoma (GBM), with respect to the subventricular zone (SVZ), on recurrence behavior, progression-free survival (PFS), and overall survival (OS). METHODS AND MATERIALS 607 patients (376 male and 231 female) with a median age of 61.3 years (range, 3.0-87.9 years) and primary GBM treated with radiation therapy (RT) from 2004 to 2012 at a single institution were included in this retrospective study. Preoperative images and follow-up examination results were assessed to evaluate tumor location. Tumors were classified according to the tumor location in relation to the SVZ. RESULTS The median PFS of the study population was 5.2 months (range, 1-91 months), and the median OS was 13.8 months (range, 1-102 months). Kaplan-Meier analysis showed that tumor location in close proximity to the SVZ was associated with a significant decline in PFS and OS (4.8 and 12.3 months, respectively; each P<.001). Furthermore, in cases where tumors were involved with the SVZ, distant cerebral progression (43.8%; P=.005) and multifocal progression (39.8%; P=.008) were more common. Interestingly, opening of the ventricle during the previous surgery showed no impact on PFS and OS. CONCLUSION GBM in close proximity to the SVZ was associated with decreased survival and had a higher risk of multifocal or distant progression. Ventricle opening during surgery had no effect on survival rates.


International Journal of Radiation Biology | 2013

Temozolomide in combination with carbon ion or photon irradiation in glioblastoma multiforme cell lines – does scheduling matter?

Semi Ben Harrabi; Stephanie E. Combs; Stephan Brons; Thomas Haberer; Jürgen Debus; Klaus-Josef Weber

Abstract Purpose: To extend the application area of particle therapy with carbon ions the many already established treatment regimens for different tumor entities have to be taken into consideration. The present study investigates the effect of combined radiochemotherapy with temozolomide (TMZ) and high linear energy transfer (LET) irradiation with carbon ions versus photons. Materials and methods: Clonogenic survival was analyzed for human glioma cell lines with different O6-methylguanine-DNA methyltransferase (MGMT) status, LN18 (MGMT+) and LN-229 (MGMT-), after exposure to different doses of either carbon ion or photon irradiation at different time points relative to TMZ application. Cell cycle distribution was measured by flow cytometry. MGMT status of the cell lines was verified by Western blot. Results: LN-18 and LN-229 reacted in accordance to their MGMT status with different sensitivity to TMZ treatment. Combined treatment with irradiation showed additive cytotoxic effects for both cell lines with low radiation doses but no radiosensitization. With increasing photon doses the combination effect was reduced, and the efficacy of the combined treatment was not dependent on administration schedule. Carbon ion irradiation showed the well known increased relative biological efficiency (RBE), overcame the abovementioned antagonism and was also not schedule-dependent. Conclusions: The in vitro effectiveness of TMZ in combined radiochemotherapy is independent of administration time or MGMT-expression. Both cell lines are significantly more sensitive to combined treatment with carbon ion radiation than to photon radiation but do not show any super-additive effects.


Radiation Oncology | 2017

Treatment of meningioma and glioma with protons and carbon ions

Sebastian Adeberg; Semi Ben Harrabi; Vivek Verma; Denise Bernhardt; Nicole Grau; Jürgen Debus; Stefan Rieken

The rapid rise of particle therapy across the world necessitates evidence to justify its ever-increasing utilization. This narrative review summarizes the current status of these technologies on treatment of both meningiomas and gliomas, the most common benign and malignant primary brain tumors, respectively. Proton beam therapy (PBT) for meningiomas displays high rates of long-term local control, low rates of symptomatic deterioration, along with the potential for safe dose-escalation in select (but not necessarily routine) cases. PBT is also associated with low adverse events and maintenance of functional outcomes, which have implications for quality of life and cost-effectiveness measures going forward. Data on carbon ion radiation therapy (CIRT) are limited; existing series describe virtually no high-grade toxicities and high local control. Regarding the few available data on low-grade gliomas, PBT provides opportunities to dose-escalate while affording no increase of severe toxicities, along with maintaining appropriate quality of life. Although dose-escalation for low-grade disease has been less frequently performed than for glioblastoma, PBT and CIRT continue to be utilized for the latter, and also have potential for safer re-irradiation of high-grade gliomas. For both neoplasms, the impact of superior dosimetric profiles with endpoints such as neurocognitive decline and neurologic funcionality, are also discussed to the extent of requiring more data to support the utility of particle therapy. Caveats to these data are also described, such as the largely retrospective nature of the available studies, patient selection, and heterogeneity in patient population as well as treatment (including mixed photon/particle treatment). Nevertheless, multiple prospective trials (which may partially attenuate those concerns) are also discussed. In light of the low quantity and quality of available data, major questions remain regarding economic concerns as well.


Radiotherapy and Oncology | 2017

Sequential proton boost after standard chemoradiation for high-grade glioma

Sebastian Adeberg; Denise Bernhardt; Semi Ben Harrabi; Matthias Uhl; Angela Paul; Nina Bougatf; Vivek Verma; Andreas Unterberg; Wolfgang Wick; Thomas Haberer; Stephanie E. Combs; Klaus Herfarth; Juergen Debus; Stefan Rieken

PURPOSE To retrospectively assess the feasibility and safety of a sequential proton boost following conventional chemoradiation in high-grade glioma (HGG). METHOD AND MATERIALS Sixty-six consecutive patients with HGG were treated with 50.0 Gy photons (50.0-50.4 Gy) in 2.0 Gy (1.8-2.0 Gy) fractions, followed by a proton boost with 10 Gy equivalent (Gy(RBE)) in 2.0 Gy(RBE) fractions. Patients were matched one to one with 66 patients with HGG undergoing conventional radiation therapy (RT) with 60.0 Gy photons (59.4-60.0 Gy) in 2.0 Gy fractions (1.8-2.0 Gy). Matching criteria were age, WHO grade, Karnofskys performance status, PTV size, temozolomide therapy (each p > 0.1). The study assessed progression-free survival (PFS), overall survival (OS), acute treatment-related toxicity (CTCAE v.4.03) and pseudoprogression (RANO criteria). RESULTS Median PFS and OS were similar in both treatment groups (bimodality RT, PFS: 8.8 months [2-32 months], OS 19.1 months [4-41 months]; photon-only RT, PFS: 7.2 months [2-39 months], 20.9 months [3-53 months]; p = 0.430 and p = 0.125). The median PTV of the proton boost was significantly smaller than the photon plan PTVs (each p < 0.001). Acute toxicity was mild. Toxicity ≥grade 2 was observed in 6 patients (9%) receiving bimodality RT and 9 patients (14%) receiving photon-only RT. Two types of severe adverse events (CTCAE grade 3) occurred solely in the photon-only group: severe increase in intracranial pressure (5%); and generalized seizures (3%). Pseudoprogression was rare, occurring on average 6 weeks after radiotherapy, and was balanced in both treatment groups (n = 4 each; 8%). CONCLUSION Delivering a proton boost to significantly smaller target volumes when compared to photon-only plans, yielded comparable progression and survival rates at lower CTCAE grade 3 acute toxicity rates. Pseudoprogression occurred rarely and evenly distributed in both treatment groups. Thus, bimodality RT was at least equivalent regarding outcome and potentially superior with respect to toxicity in patients with HGG. SUMMARY Treating patients with HGG with 50.0 Gy photons in 2.0 Gy fractions, followed by a proton boost with 10 Gy(RBE) in 2.0 Gy(RBE) fractions, is safe and feasible. Severe radiation-induced acute toxicity and pseudoprogression were rare in both treatment groups. Therefore, in this clinical setting, combined proton radiotherapy might be beneficial in terms of further risk reduction for treatment-related side effects. Interestingly, treatment volume reduction using a proton boost led to comparable survival and progression rates with decreased severe treatment-related toxicity compared to conventional photon radiotherapy.


Radiology and Oncology | 2017

Metformin enhanced in vitro radiosensitivity associates with G2/M cell cycle arrest and elevated adenosine-5’-monophosphate-activated protein kinase levels in glioblastoma

Sebastian Adeberg; Denise Bernhardt; Semi Ben Harrabi; Nils H. Nicolay; Juliane Hörner-Rieber; Laila König; Michael C. Repka; Angela Mohr; Amir Abdollahi; Klaus J. Weber; Juergen Debus; Stefan Rieken

Abstract Background It is hypothesized that metabolism plays a strong role in cancer cell regulation. We have recently demonstrated improved progression-free survival in patients with glioblastoma who received metformin as an antidiabetic substance during chemoradiation. Although metformin is well-established in clinical use the influence of metformin in glioblastoma is far from being understood especially in combination with other treatment modalities such as radiation and temozolomide. Materials and Methods In this study, we examined the influence of metformin in combinations with radiation and temozolomide on cell survival (clonogenic survival), cell cycle (routine flow cytometric analysis, FACScan), and phosphorylated Adenosine-5’-monophosphate-activated protein kinase (AMPK) (Phopho-AMPKalpha1 - ELISA) levels in glioblastoma cell lines LN18 and LN229. Results Metformin and temozolomide enhanced the effectiveness of photon irradiation in glioblastoma cells. Cell toxicity was more pronounced in O6-methylguanine DNA methyltransferase (MGMT) promoter non-methylated LN18 cells. Induction of a G2/M phase cell cycle block through metformin and combined treatments was observed up to 72 h. These findings were associated with elevated levels of activated AMPK levels in LN229 cells but not in LN18 cells after irradiation, metformin, and temozolomide treatment. Conclusions Radiosensitizing effects of metformin on glioblastoma cells treated with irradiation and temozolomide in vitro coincided with G2/M arrest and changes in pAMPK levels.


Journal of Radiation Research | 2016

S-phase–specific radiosensitization by gemcitabine for therapeutic carbon ion exposure in vitro

Semi Ben Harrabi; Sebastian Adeberg; Marcus Winter; Thomas Haberer; Jürgen Debus; Klaus-Josef Weber

Densely ionizing charged particle irradiation offers physical as well as biological advantages compared with photon irradiation. Radiobiological data for the combination of such particle irradiation (i.e. therapeutic carbon ions) with commonly used chemotherapeutics are still limited. Recent in vitro results indicate a general prevalence of additive cytotoxic effects in combined treatments, but an extension of established multimodal treatment regimens with photons to the inclusion of particle therapy needs to evaluate possible peculiarities of using high linear energy transfer (LET) radiation. The present study investigates the effect of combined radiochemotherapy using gemcitabine and high-LET irradiation with therapeutic carbon ions. In particular, the earlier observation of S-phase specific radiosensitization with photon irradiation should be evaluated with carbon ions. In the absence of the drug gemcitabine, carbon ion irradiation produced the typical survival behavior seen with X-rays—increased relative biological efficiency, and depletion of the survival curves shoulder. By means of serum deprivation and subsequent replenishment, ∼70% S-phase content of the cell population was achieved, and such preparations showed radioresistance in both treatment arms—,photon and carbon ion irradiation. Combined modality treatment with gemcitabine caused significant reduction of clonogenic survival especially for the S-phase cells. WIDR cells exhibited S-phase–specific radioresistance with high-LET irradiation, although this was less pronounced than for X-ray exposure. The combined treatment with therapeutic carbon ions and gemcitabine caused the resistance phenomenon to disappear phenotypically.


Stem Cells International | 2016

Do Increased Doses to Stem-Cell Niches during Radiation Therapy Improve Glioblastoma Survival?

Sebastian Adeberg; Semi Ben Harrabi; Nina Bougatf; Denise Bernhardt; Angela Mohr; Juliane Rieber; Christian Koelsche; Stefan Rieken; Juergen Debus

Background and Purpose. The reasons for the inevitable glioblastoma recurrence are yet understood. However, recent data suggest that tumor cancer stem cells (CSCs) in the stem-cell niches, with self-renewing capacities, might be responsible for tumor initiation, propagation, and recurrence. We aimed to analyze the effect of higher radiation doses to the stem-cell niches on progression-free survival (PFS) and overall survival (OS) in glioblastoma patients. Materials and Methods. Sixty-five patients with primary glioblastoma treated with radiation therapy were included in this retrospective analysis. The SVZ and DG were segmented on treatment planning magnetic resonance imaging, and the dose distributions to the structures were calculated. The relationship of dosimetry data and survival was evaluated using the Cox regression analysis. Results. Conventionally fractionated patients (n = 54) who received higher doses (D mean ≥ 40 Gy) to the IL SVZ showed improved PFS (8.5 versus 5.2 months; p = 0.013). Furthermore, higher doses (D mean ≥ 30 Gy) to the CL SVZ were associated with increased PFS (10.1 versus 6.9 months; p = 0.025). Conclusion. Moderate higher IL SVZ doses (≥40 Gy) and CL SVZ doses (≥30 Gy) are associated with improved PFS. Higher doses to the DG, the second stem-cell niche, did not influence the survival. Targeting the potential cancer stem cells in the SVZ might be a promising treatment approach for glioblastoma and should be addressed in a prospective randomized trial.


Radiotherapy and Oncology | 2018

High-resolution FLAIR MRI at 7 Tesla for treatment planning in glioblastoma patients

Sebastian Regnery; Benjamin R. Knowles; Daniel Paech; Nicolas G.R. Behl; Jan-Eric Meissner; Paul Windisch; Semi Ben Harrabi; Denise Bernhardt; Heinz-Peter Schlemmer; Mark E. Ladd; Stefan Rieken; Jürgen Debus; Sebastian Adeberg

Ultra-high field MRI is an emerging technique promising high-resolution images for radiotherapy planning. We compared a 7 Tesla FLAIR sequence with clinical FLAIR imaging at 3 Tesla in glioblastoma patients before radiotherapy. High-resolution 7 Tesla FLAIR imaging may enhance the depiction of organs at risk and possibly modify target volumes.


Cancers | 2018

Dosimetric Comparison of Proton Radiation Therapy, Volumetric Modulated Arc Therapy, and Three-Dimensional Conformal Radiotherapy Based on Intracranial Tumor Location

Sebastian Adeberg; Semi Ben Harrabi; Nina Bougatf; Vivek Verma; Paul Windisch; Denise Bernhardt; Stephanie E. Combs; Klaus Herfarth; Juergen Debus; Stefan Rieken

(1) Background: Selecting patients that will benefit the most from proton radiotherapy (PRT) is of major importance. This study sought to assess dose reductions to numerous organs-at-risk (OARs) with PRT, as compared to three-dimensional conformal radiotherapy (3DCRT) and volumetric-modulated arc therapy (VMAT), as a function of tumor location. (2) Materials/Methods: Patients with intracranial neoplasms (all treated with PRT) were stratified into five location-based groups (frontal, suprasellar, temporal, parietal, posterior cranial fossa; n = 10 per group). Each patient was re-planned for 3DCRT and intensity-modulated radiotherapy (IMRT) using similar methodology, including the originally planned target and organ-at-risk (OAR) dose constraints. (3) Results: In parietal tumors, PRT showed the most pronounced dose reductions. PRT lowered doses to nearly every OAR, most notably the optical system and several contralateral structures (subventricular zone, thalamus, hippocampus). For frontal lobe cases, the greatest relative dose reductions in mean dose (Dmean) with PRT were to the infratentorial normal brain, contralateral hippocampus, brainstem, pituitary gland and contralateral optic nerve. For suprasellar lesions, PRT afforded the greatest relative Dmean reductions to the infratentorial brain, supratentorial brain, and the whole brain. Similar results could be observed in temporal and posterior cranial fossa disease. (4) Conclusions: The effectiveness and degree of PRT dose-sparing to various OARs depends on intracranial tumor location. These data will help to refine selection of patients receiving PRT, cost-effectiveness, and future clinical toxicity assessment.


Radiation Oncology | 2014

Long term results after fractionated stereotactic radiotherapy (FSRT) in patients with craniopharyngioma: maximal tumor control with minimal side effects

Semi Ben Harrabi; Sebastian Adeberg; Thomas Welzel; Stefan Rieken; Daniel Habermehl; Jürgen Debus; Stephanie E. Combs

Collaboration


Dive into the Semi Ben Harrabi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Rieken

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Denise Bernhardt

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar

Jürgen Debus

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juergen Debus

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Klaus Herfarth

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Adeberg

University Hospital Heidelberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge