Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Semra Isik is active.

Publication


Featured researches published by Semra Isik.


Journal of Medicinal Chemistry | 2012

DNA cloning, characterization, and inhibition studies of an α-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

Sonia Del Prete; Semra Isik; Daniela Vullo; Viviana De Luca; Vincenzo Carginale; Andrea Scozzafava; Claudiu T. Supuran; Clemente Capasso

We have cloned, purified, and characterized an α-carbonic anhydrase (CA, EC 4.2.1.1) from the human pathogenic bacterium Vibrio cholerae, VchCA. The new enzyme has significant catalytic activity, and an inhibition study with sulfonamides and sulfamates led to the detection of a large number of low nanomolar inhibitors, among which are methazolamide, acetazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, and indisulam (KI values in the range 0.69-8.1 nM). As bicarbonate is a virulence factor of this bacterium and since ethoxzolamide was shown to inhibit the in vivo virulence, we propose that VchCA may be a target for antibiotic development, exploiting a mechanism of action rarely considered until now.


Bioorganic & Medicinal Chemistry | 2009

Carbonic anhydrase inhibitors: Inhibition of the β-class enzyme from the yeast Saccharomyces cerevisiae with sulfonamides and sulfamates

Semra Isik; Feray Kockar; Meltem Aydin; Oktay Arslan; Ozen Ozensoy Guler; Alessio Innocenti; Andrea Scozzafava; Claudiu T. Supuran

The protein encoded by the Nce103 gene of Saccharomyces cerevisiae, a beta-carbonic anhydrase (CA, EC 4.2.1.1) designated as scCA, has been cloned, purified, characterized kinetically and investigated for its inhibition with a series of sulfonamides and one sulfamate. The enzyme showed high CO(2) hydrase activity, with a k(cat) of 9.4x10(5)s(-1), and k(cat)/K(M) of 9.8x10(7)M(-1)s(-1). Simple benzenesulfonamides substituted in 2-, 4- and 3,4-positions of the benzene ring with amino, alkyl, halogeno and hydroxyalkyl moieties were weak scCA inhibitors with K(I)s in the range of 0.976-18.45 microM. Better inhibition (K(I)s in the range of 154-654 nM) was observed for benzenesulfonamides incorporating aminoalkyl/carboxyalkyl moieties or halogenosulfanilamides; benzene-1,3-disulfonamides; simple heterocyclic sulfonamides and sulfanilyl-sulfonamides. The clinically used sulfonamides/sulfamate (acetazolamide, ethoxzolamide, methazolamide, dorzolamide, topiramate, celecoxib, etc.) generally showed effective scCA inhibitory activity, with K(I)s in the range of 82.6-133 nM. The best inhibitor (K(I) of 15.1 nM) was 4-(2-amino-pyrimidin-4-yl)-benzenesulfonamide. These inhibitors may be useful to better understand the physiological role of beta-CAs in yeast and some pathogenic fungi which encode orthologues of the yeast enzyme and eventually for designing novel antifungal therapies.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2014

Carbonic anhydrase inhibitors. Phenols incorporating 2- or 3-pyridyl-ethenylcarbonyl and tertiary amine moieties strongly inhibit Saccharomyces cerevisiae β-carbonic anhydrase

Sinan Bilginer; Elif Unluer; Halise Inci Gul; Ebru Mete; Semra Isik; Daniela Vullo; Ozen Ozensoy-Guler; Serap Beyaztas; Clemente Capasso; Claudiu T. Supuran

Abstract A series of phenols incorporating tertiary amine and trans-pyridylethenyl-carbonyl moieties were assayed as inhibitors of the β-carbonic anhydrase (CA, EC 4.2.1.1) from Saccharomyces cerevisiae, ScCA. One of these compounds was a low nanomolar ScCA inhibitor, whereas the remaining ones inhibited the enzyme with KIs in the range of 23.5–95.4 nM. The off-target human (h) isoforms hCA I and hCA II were much less inhibited by these phenols, with KIs in the range of 0.78–23.5 µM (hCA I) and 10.8–52.4 µM (hCA II). The model organism S. cerevisiae and this particular enzyme may be useful for detecting antifungals with a novel mechanism of action compared to the classical azole drugs to which significant drug resistance emerged.


Bioorganic & Medicinal Chemistry | 2013

Carbonic anhydrase inhibitors: Benzenesulfonamides incorporating cyanoacrylamide moieties are low nanomolar/subnanomolar inhibitors of the tumor-associated isoforms IX and XII

Ahmed M. Alafeefy; Semra Isik; Hatem A. Abdel-Aziz; Abdelkader E. Ashour; Daniela Vullo; Nabila A. Al-Jaber; Claudiu T. Supuran

A series of benzenesulfonamides incorporating cyanoacrylamide moieties (tyrphostine analogues) have been obtained by reaction of sulfanilamide with ethylcyanoacetate followed by condensation with aromatic/heterocyclic aldehydes, isothiocyanates or diazonium salts. The new compounds have been investigated as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4. 2.1.1), and more specifically against the cytosolic human (h) isoforms hCA I and II, as well as the transmembrane, tumor-associated ones CA IX and XII, which are validated antitumor targets. Most of the new benzenesulfonamides were low nanomolar or subnanomolar CA IX/XII inhibitors whereas they were less effective as inhibitors of CA I and II. The structure-activity relationship for this class of effective CA inhibitors is also discussed. Generally, electron donating groups in the starting aldehyde reagent favored CA IX and XII inhibition, whereas halogeno, methoxy and dimethylamino moieties led to very potent CA XII inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2008

Carbonic anhydrase inhibitors. Inhibition of the β-class enzyme from the yeast Saccharomyces cerevisiae with anions

Semra Isik; Feray Kockar; Oktay Arslan; Ozen Ozensoy Guler; Alessio Innocenti; Claudiu T. Supuran

The protein encoded by the Nce103 gene of Saccharomyces cerevisiae, a beta-carbonic anhydrase (CA, EC 4.2.1.1) designated as scCA, has been cloned, purified, characterized kinetically, and investigated for its inhibition with a series simple, inorganic anions such as halogenides, pseudohalogenides, bicarbonate, carbonate, nitrate, nitrite, hydrogen sulfide, bisulfite, perchlorate, sulfate, and some of its isosteric species. The enzyme showed high CO(2) hydrase activity, with a k(cat) of 9.4x10(5) s(-1) and k(cat)/K(m) of 9.8x10(7) M(-1) s(-1). scCA was weakly inhibited by metal poisons (cyanide, azide, cyanate, thiocyanate, K(I)s of 16.8-55.6 mM) and strongly inhibited by bromide, iodide, and sulfamide (K(I)s of 8.7-10.8 microM). The other investigated anions showed inhibition constants in the low millimolar range.


Bioorganic & Medicinal Chemistry | 2015

Synthesis of a new series of dithiocarbamates with effective human carbonic anhydrase inhibitory activity and antiglaucoma action

Murat Bozdag; Fabrizio Carta; Daniela Vullo; Atilla Akdemir; Semra Isik; Cecilia Lanzi; Andrea Scozzafava; Emanuela Masini; Claudiu T. Supuran

A new series of dithiocarbamates (DTCs) was prepared from primary/secondary amines incorporating amino/hydroxyl-alkyl, mono- and bicyclic aliphatic ring systems based on the quinuclidine, piperidine, hydroxy-/carboxy-/amino-substituted piperidine, morpholine and piperazine scaffolds, and carbon disulfide. The compounds were investigated for the inhibition of four mammalian α-carbonic anhydrases (CAs, EC 4.2.1.1) of pharmacologic relevance, that is, the human (h) hCA I, II, IX and XII, drug targets for antiglaucoma (hCA II and XII) or antitumor (hCA IX/XII) agents. The compounds were moderate or inefficient hCA I inhibitors (off-target isoform for both applications), efficiently inhibited hCA II, whereas some of them were low nanomolar/subnanomolar hCA IX/XII inhibitors. One DTC showed excellent intraocular pressure (IOP) lowering properties in an animal model of glaucoma, with a two times better efficiency compared to the clinically used sulfonamide dorzolamide.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2015

A new affinity gel for the purification of α-carbonic anhdrases

Aysegul Sahin; Semra Isik; Oktay Arslan; Claudiu T. Supuran; Ozen Ozensoy Guler

Abstract The new affinity gel reported in this study was prepared using EUPERGIT C250L as a chromatographic bed material, to which etylenediamine spacer arms were attached to prevent steric hindrance between the matrix and ligand, and to facilitate effective binding of the CA-specific ligand, of the aromatic sulfonamide type for the purification of α-carbonic anhydrases (Cas; EC 4.2.1.1). Indeed, the aminoethyl moieties of the affinity gel were derivatized by reaction with 4-isothiocyanatobenzenesulfonamide, with the formation of a thiourea-based gel, having inhibitory effects against CAs. Both bovine erythrocyte carbonic anhydrase BCA and human (h) erythrocyte CA isoforms I, II (hCA I and II) have been purified from hemolysates, by using this affinity gel. The greatest purification fold and column yields for BCA and for cytosolic (hCA I + II) enzymes were of 181-fold (21.07%) and 184-fold (9.49%), respectively. Maximum binding was achieved at 15 °C and I = 0.3 ionic strength for α-carbonic anhydrases.


Bioorganic & Medicinal Chemistry Letters | 2015

Interaction of carbonic anhydrase isozymes I, II, and IX with some pyridine and phenol hydrazinecarbothioamide derivatives.

Semra Isik; Daniela Vullo; Serdar Durdagi; Deniz Ekinci; Murat Şentürk; Ahmet Cetin; Esra Şentürk; Claudiu T. Supuran

A series of hydrazinecarbothioamide derivatives incorporating ethyl, phenyl, tolyl, benzyl, and allyl moieties were prepared and tested as possible inhibitors of three members of the pH regulatory enzyme family, carbonic anhydrase (CA; EC 4.2.1.1). The inhibitory and activatory potencies of the compounds against the cytosolic human isoforms hCA I and hCA II and the transmembrane, tumor-associated hCA IX were analyzed by a hydrase assay with CO2 as substrate, and the inhibition constants (KI) were calculated. Most compounds investigated here exhibited nanomolar or low micromolar inhibition constants against the three isoenzymes. KI values were in the range of 34.1-871 nM for hCA I and compounds 5-10 showed interesting activation of the hCA II with KA value of 0.81-12.5 μM. Compounds 11-16 exhibited moderate inhibition effects on hCA IX in the range of 0.317-1.245 μM but they were less effective for hCA II. Tested compounds were also investigated using in silico applications at the binding pockets of these three targets. The different mechanisms of inhibition by these tested compounds as compared to sulfonamides, and their diverse inhibition profile for these mammalian isozymes, makes this class of derivatives of great interest for the design of novel CA inhibitors.


Bioorganic & Medicinal Chemistry | 2015

Cloning, characterization and anion inhibition study of a β-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans

Nurcan Dedeoglu; Viviana De Luca; Semra Isik; Hatice Yildirim; Feray Kockar; Clemente Capasso; Claudiu T. Supuran

The oral pathogenic bacterium involved in human dental caries formation Streptococcus mutans, encodes for two carbonic anhydrase (CA, EC 4.2.1.1) one belonging to the α- and the other one to the β-class. This last enzyme (SmuCA) has been cloned, characterized and investigated for its inhibition profile with a major class of CA inhibitors, the inorganic anions. Here we show that SmuCA has a good catalytic activity for the CO2 hydration reaction, with kcat 4.2×10(5)s(-1) and kcat/Km of 5.8×10(7)M(-1)×s(-1), being inhibited by cyanate, carbonate, stannate, divannadate and diethyldithiocarbamate in the submillimolar range (KIs of 0.30-0.64mM) and more efficiently by sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid (KIs of 15-46μM). The anion inhibition profile of the S. mutans enzyme is very different from other α- and β-CAs investigated earlier. Identification of effective inhibitors of this new enzyme may lead to pharmacological tools useful for understanding the role of S. mutans CAs in dental caries formation, and eventually the development of pharmacological agents with a new mechanism of antibacterial action.


Bioorganic & Medicinal Chemistry | 2013

o-Benzenedisulfonimido-sulfonamides are potent inhibitors of the tumor-associated carbonic anhydrase isoforms CA IX and CA XII.

Özlen Güzel-Akdemir; Atilla Akdemir; Semra Isik; Daniela Vullo; Claudiu T. Supuran

By using phthalimido-substituted aromatic sufonamides as lead molecules, a series of new sulfonamides incorporating ortho-benzenedisulfonimide moieties have been synthesized and tested against the human (h) cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isozymes hCA I and hCA II and the transmembrane, tumor-associated isozymes hCA IX and hCA XII. All these compounds showed Ki values lower than 100nM and many of them showed better Kis than the reference compound acetazolamide, a clinically used sulfonamide. The tumor-associated isozymes were better inhibited than the cytosolic ones. A molecular docking within the active site of some CA isoforms, such as hCA I, explained these findings, as the benzenedisulfonimide moiety makes favorable interactions (hydrogen bonds) with amino acid residues involved in binding of inhibitors, such as Gln92, His67, and His64.

Collaboration


Dive into the Semra Isik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ozen Ozensoy Guler

Yıldırım Beyazıt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge