Sen Pei
Beihang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sen Pei.
Journal of Statistical Mechanics: Theory and Experiment | 2013
Sen Pei; Hernán A. Makse
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community?LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
PLOS ONE | 2015
Sen Pei; Lev Muchnik; Shaoting Tang; Zhiming Zheng; Hernán A. Makse
Information spreading in online social communities has attracted tremendous attention due to its utmost practical values in applications. Despite that several individual-level diffusion data have been investigated, we still lack the detailed understanding of the spreading pattern of information. Here, by comparing information flows and social links in a blog community, we find that the diffusion processes are induced by three different spreading mechanisms: social spreading, self-promotion and broadcast. Although numerous previous studies have employed epidemic spreading models to simulate information diffusion, we observe that such models fail to reproduce the realistic diffusion pattern. In respect to users behaviors, strikingly, we find that most users would stick to one specific diffusion mechanism. Moreover, our observations indicate that the social spreading is not only crucial for the structure of diffusion trees, but also capable of inducing more subsequent individuals to acquire the information. Our findings suggest new directions for modeling of information diffusion in social systems, and could inform design of efficient propagation strategies based on users behaviors.
Scientific Reports | 2017
Sen Pei; Xian Teng; Jeffrey Shaman; Flaviano Morone; Hernán A. Makse
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches.In spreading dynamics in social networks, there exists an optimal set of influencers whose activation can induce a global-scale cascade of information. To find the optimal, or minimal, set of spreaders, a method based on collective influence theory has been proposed for spreading dynamics with a continuous phase transition that can be mapped to optimal percolation. However, when it comes to diffusion processes exhibiting a first-order, or discontinuous transition, identifying the set of optimal spreaders with a linear algorithm for large-scale networks still remains a challenging task. Here we address this issue by exploring the collective influence in general threshold models of opinion cascading. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a linearly scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the set of spreaders predicted by our method is smaller than those identified by other linearly scalable heuristic approaches.
Scientific Reports | 2016
Xian Teng; Sen Pei; Flaviano Morone; Hernán A. Makse
Identifying the most influential spreaders that maximize information flow is a central question in network theory. Recently, a scalable method called “Collective Influence (CI)” has been put forward through collective influence maximization. In contrast to heuristic methods evaluating nodes’ significance separately, CI method inspects the collective influence of multiple spreaders. Despite that CI applies to the influence maximization problem in percolation model, it is still important to examine its efficacy in realistic information spreading. Here, we examine real-world information flow in various social and scientific platforms including American Physical Society, Facebook, Twitter and LiveJournal. Since empirical data cannot be directly mapped to ideal multi-source spreading, we leverage the behavioral patterns of users extracted from data to construct “virtual” information spreading processes. Our results demonstrate that the set of spreaders selected by CI can induce larger scale of information propagation. Moreover, local measures as the number of connections or citations are not necessarily the deterministic factors of nodes’ importance in realistic information spreading. This result has significance for rankings scientists in scientific networks like the APS, where the commonly used number of citations can be a poor indicator of the collective influence of authors in the community.
Physical Review E | 2012
Sen Pei; Shaoting Tang; Shu Yan; Shijin Jiang; Xiao Zhang; Zhiming Zheng
We investigate the collective dynamics of excitatory-inhibitory excitable networks in response to external stimuli. How to enhance the dynamic range, which represents the ability of networks to encode external stimuli, is crucial to many applications. We regard the system as a two-layer network (E layer and I layer) and explore the criticality and dynamic range on diverse networks. Interestingly, we find that phase transition occurs when the dominant eigenvalue of the E layers weighted adjacency matrix is exactly 1, which is only determined by the topology of the E layer. Meanwhile, it is shown that the dynamic range is maximized at a critical state. Based on theoretical analysis, we propose an inhibitory factor for each excitatory node. We suggest that if nodes with high inhibitory factors are cut out from the I layer, the dynamic range could be further enhanced. However, because of the sparseness of networks and passive function of inhibitory nodes, the improvement is relatively small compared to the original dynamic range. Even so, this provides a strategy to enhance the dynamic range.
Journal of Statistical Mechanics: Theory and Experiment | 2015
Shu Yan; Shaoting Tang; Wenyi Fang; Sen Pei; Zhiming Zheng
Immunization plays an important role in the field of epidemic spreading in complex networks. In previous studies, targeted immunization has been proved to be an effective strategy. However, when extended to networks with community structure, it is unknown whether the superior strategy is to vaccinate the nodes who have the most connections in the entire network (global strategy), or those in the original community where epidemic starts to spread (local strategy). In this work, by using both analytic approaches and simulations, we observe that the answer depends on the closeness between communities. If communities are tied closely, the global strategy is superior to the local strategy. Otherwise, the local targeted immunization is advantageous. The existence of a transitional value of closeness implies that we should adopt different strategies. Furthermore, we extend our investigation from two-community networks to multi-community networks. We consider the mode of community connection and the location of community where epidemic starts to spread. Both simulation results and theoretical predictions show that local strategy is a better option for immunization in most cases. But if the epidemic begins from a core community, global strategy is superior in some cases.
Physical Review E | 2014
Shu Yan; Shaoting Tang; Sen Pei; Shijin Jiang; Zhiming Zheng
The topic of finding an effective strategy to halt virus in a complex network is of current interest. We propose an immunization strategy for seasonal epidemics that occur periodically. Based on the local information of the infection status from the previous epidemic season, the selection of vaccinated nodes is optimized gradually. The evolution of vaccinated nodes during iterations demonstrates that the immunization tends to locate in both global hubs and local hubs. We analyze the epidemic prevalence using a heterogeneous mean-field method, and we present numerical simulations of our model. This immunization performs better than some other previously known strategies. Our work highlights an alternative direction in immunization for seasonal epidemics.
PLOS ONE | 2015
Sen Pei; Shaoting Tang; Zhiming Zheng
Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of humans’ physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-scale spreading processes. At the same time, it can also distinguish large-scale diffusion instances due to the self-inhibition effect of excitable elements. Through simulations of diverse spreading dynamics on typical real-world social networks (Facebook, coauthor, and email social networks), we find that the excitable sensor networks are capable of detecting and ranking spreading processes in a much wider range of influence than other commonly used sensor placement methods, such as random, targeted, acquaintance and distance strategies. In addition, we validate the efficacy of our method with diffusion data from a real-world online social system, Twitter. We find that our method can detect more spreading topics in practice. Our approach provides a new direction in spreading detection and should be useful for designing effective detection methods.
Physica A-statistical Mechanics and Its Applications | 2015
Shaoting Tang; Xian Teng; Sen Pei; Shu Yan; Zhiming Zheng
Identifying highly susceptible individuals in spreading processes is of great significance in controlling outbreaks. In this paper, we explore the susceptibility of people in susceptible-infectious-recovered (SIR) and rumor spreading dynamics. We first study the impact of community structure on people’s susceptibility. Although the community structure can reduce the number of infected people for same infection rate, it will not significantly affect nodes’ susceptibility. We find the susceptibility of individuals is sensitive to the choice of spreading dynamics. For SIR spreading, since the susceptibility is highly correlated to nodes’ influence, the topological indicator k-shell can better identify highly susceptible individuals, outperforming degree, betweenness centrality and PageRank. In contrast, in rumor spreading model, where nodes’ susceptibility and influence have no clear correlation, degree performs the best among considered topological measures. Our finding highlights the significance of both topological features and spreading mechanisms in identifying highly susceptible population.
Chaos | 2018
Renquan Zhang; Sen Pei
We study the strategy to optimally maximize the dynamic range of excitable networks by removing the minimal number of links. A network of excitable elements can distinguish a broad range of stimulus intensities and has its dynamic range maximized at criticality. In this study, we formulate the activation propagation in excitable networks as a message passing process in which a critical state is reached when the largest eigenvalue of the weighted non-backtracking matrix is close to one. By considering the impact of single link removal on the largest eigenvalue, we develop an efficient algorithm that aims to identify the optimal set of links whose removal will drive the system to the critical state. Comparisons with other competing heuristics on both synthetic and real-world networks indicate that the proposed method can maximize the dynamic range by removing the smallest number of links, and at the same time maintaining the largest size of the giant connected component.