Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sena Cansiz is active.

Publication


Featured researches published by Sena Cansiz.


Journal of the American Chemical Society | 2015

Self-assembly of DNA Nanohydrogels with Controllable Size and Stimuli-Responsive Property for Targeted Gene Regulation Therapy

Juan Li; Cheng Zheng; Sena Cansiz; Cuichen Wu; Jiehua Xu; Cheng Cui; Yuan Liu; Weijia Hou; Yanyue Wang; Liqin Zhang; I-Ting Teng; Huang-Hao Yang; Weihong Tan

Here, we report the synthesis and characterization of size-controllable and stimuli-responsive DNA nanohydrogels as effective targeted gene delivery vectors. DNA nanohydrogels were created through a self-assembly process using three kinds of building units, respectively termed Y-shaped monomer A with three sticky ends (YMA), Y-shaped monomer B with one sticky end (YMB), and DNA linker (LK) with two sticky ends. Hybridization at the sticky ends of monomers and LK leads to nanohydrogel formation. DNA nanohydrogels are size-controllable by varying the ratio of YMA to YMB. By incorporating different functional elements, such as aptamers, disulfide linkages, and therapeutic genes into different building units, the synthesized aptamer-based nanohydrogels (Y-gel-Apt) can be used for targeted and stimuli-responsive gene therapy. Y-gel-Apt strongly inhibited cell proliferation and migration in target A549 cells, but not in control cells. By taking advantage of facile modular design and assembly, efficient cellular uptake, and superior biocompatibility, this Y-gel-Apt holds great promise as a candidate for targeted gene or drug delivery and cancer therapy.


Journal of the American Chemical Society | 2015

A Nonenzymatic Hairpin DNA Cascade Reaction Provides High Signal Gain of mRNA Imaging inside Live Cells

Cuichen Wu; Sena Cansiz; Liqin Zhang; I-Ting Teng; Liping Qiu; Juan Li; Yuan Liu; Cuisong Zhou; Rong Hu; Tao Zhang; Cheng Cui; Liang Cui; Weihong Tan

Enzyme-free signal amplification has enabled sensitive in vitro detection of biomolecules such as proteins and nucleic acids. However, monitoring targets of interest in live cells via enzyme-free amplification is still challenging, especially for analytes with low concentrations. To the best of our knowledge, this paper reports the first attempt to perform mRNA imaging inside live cells, using a nonenzymatic hairpin DNA cascade reaction for high signal gain, termed a hairpin DNA cascade amplifier (HDCA). In conventional nucleic acid probes, such as linear hybridization probes, mRNA target signaling occurs in an equivalent reaction ratio (1:1), whereas, in HDCA, one mRNA target is able to yield multiple signal outputs (1:m), thus achieving the goal of signal amplification for low-expression mRNA targets. Moreover, the recycled mRNA target in the HDCA serves as a catalyst for the assembly of multiple DNA duplexes, generating the fluorescent signal of reduced MnSOD mRNA expression, thus indicating amplified intracellular imaging. This programmable cascade reaction presents a simple and modular amplification mechanism for intracellular biomarkers of interest, providing a significant boost to the search for clues leading to the accurate identification and effective treatment of cancers.


Journal of the American Chemical Society | 2014

Facile Surface Functionalization of Hydrophobic Magnetic Nanoparticles

Yuan Liu; Tao Chen; Cuichen Wu; Liping Qiu; Rong Hu; Juan Li; Sena Cansiz; Liqin Zhang; Cheng Cui; Guizhi Zhu; Mingxu You; Tao Zhang; Weihong Tan

Nonpolar phase synthesized hydrophobic nanocrystals show attractive properties and have demonstrated prominent potential in biomedical applications. However, the preparation of biocompatible nanocrystals is made difficult by the presence of hydrophobic surfactant stabilizer on their surfaces. To address this limitation, we have developed a facile, high efficiency, single-phase and low-cost method to convert hydrophobic magnetic nanoparticles (MNPs) to an aqueous phase using tetrahydrofuran, NaOH and 3,4-dihydroxyhydrocinnamic acid without any complicated organic synthesis. The as-transferred hydrophilic MNPs are water-soluble over a wide pH range (pH = 3–12), and the solubility is pH-controllable. Furthermore, the as-transferred MNPs with carboxylate can be readily adapted with further surface functionalization, varying from small molecule dyes to oligonucleotides and enzymes. Finally, the strategy developed here can easily be extended to other types of hydrophobic nanoparticles to facilitate biomedical applications of nanomaterials.


Journal of the American Chemical Society | 2015

Ionic Functionalization of Hydrophobic Colloidal Nanoparticles To Form Ionic Nanoparticles with Enzymelike Properties

Yuan Liu; Daniel L. Purich; Cuichen Wu; Tao Chen; Cheng Cui; Liqin Zhang; Sena Cansiz; Weijia Hou; Yanyue Wang; Shengyuan Yang; Weihong Tan

Inorganic colloidal nanoparticles (NPs) stabilized by a layer of hydrophobic surfactant on their surfaces have poor solubility in the aqueous phase, thus limiting their application as biosensors under physiological conditions. Here we report a simple model to ionize various types of hydrophobic colloidal NPs, including FePt, cubic Fe3O4, Pd, CdSe, and NaYF4 (Yb 30%, Er 2%, Nd 1%) NPs, to multicharged (positive and negative) NPs via ligand exchange. Surfaces of neutral hydrophobic NPs were converted to multicharged ions, thus making them soluble in water. Furthermore, peroxidase-like activity was observed for ionic FePt, Fe3O4, Pd, and CdSe NPs, of which FePt and CdSe catalyzed the oxidation of the colorless substrate 3,3′,5,5′-tetramethylbenzidine (TMB) to the blue-colored product in the absence of H2O2, while Pd and Fe3O4 catalyzed the oxidization of TMB in the presence of H2O2. With the benefit of the ionic functionalization protocols described herein, colloidal NPs should gain wider use as biomarkers, nanozymes, and biosensors.


ACS Nano | 2017

Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes

Sai Wang; Liqin Zhang; Shuo Wan; Sena Cansiz; Cheng Cui; Yuan Liu; Ren Cai; Cheng-Yi Hong; I-Ting Teng; Muling Shi; Yiyang Dong; Weihong Tan

Exosomes are extracellular vesicles (50-100 nm) circulating in biofluids as intercellular signal transmitters. Although the potential of cancerous exosomes as tumor biomarkers is promising, sensitive and rapid detection of exosomes remains challenging. Herein, we combined the strengths of advanced aptamer technology, DNA-based nanostructure, and portable electrochemical devices to develop a nanotetrahedron (NTH)-assisted aptasensor for direct capture and detection of hepatocellular exosomes. The oriented immobilization of aptamers significantly improved the accessibility of an artificial nucleobase-containing aptamer to suspended exosomes, and the NTH-assisted aptasensor could detect exosomes with 100-fold higher sensitivity when compared to the single-stranded aptamer-functionalized aptasensor. The present study provides a proof-of-concept for sensitive and efficient quantification of tumor-derived exosomes. We thus expect the NTH-assisted electrochemical aptasensor to become a powerful tool for comprehensive exosome studies.


Angewandte Chemie | 2016

Aptamers against Cells Overexpressing Glypican 3 from Expanded Genetic Systems Combined with Cell Engineering and Laboratory Evolution

Liqin Zhang; Zunyi Yang; Thu Le Trinh; I-Ting Teng; Sai Wang; Kevin M. Bradley; Shuichi Hoshika; Qunfeng Wu; Sena Cansiz; Diane J. Rowold; Christopher McLendon; Myong-Sang Kim; Cheng Cui; Yuan Liu; Weijia Hou; Kimberly Stewart; Shuo Wan; Chen Liu; Steven A. Benner; Weihong Tan

Laboratory in vitro evolution (LIVE) might deliver DNA aptamers that bind proteins expressed on the surface of cells. In this work, we used cell engineering to place glypican 3 (GPC3), a possible marker for liver cancer theranostics, on the surface of a liver cell line. Libraries were then built from a six-letter genetic alphabet containing the standard nucleobases and two added nucleobases (2-amino-8H-imidazo[1,2-a][1,3,5]triazin-4-one and 6-amino-5-nitropyridin-2-one), Watson-Crick complements from an artificially expanded genetic information system (AEGIS). With counterselection against non-engineered cells, eight AEGIS-containing aptamers were recovered. Five bound selectively to GPC3-overexpressing cells. This selection-counterselection scheme had acceptable statistics, notwithstanding the possibility that cells engineered to overexpress GPC3 might also express different off-target proteins. This is the first example of such a combination.


Interface Focus | 2013

Cancer cell sensing and therapy using affinity tag-conjugated gold nanorods

Emir Yasun; Huaizhi Kang; Huseyin Erdal; Sena Cansiz; Ismail Ocsoy; Yu-Fen Huang; Weihong Tan

Through the developments in controlling the shape of gold nanoparticles, synthesis of gold nanorods (AuNRs) can be considered as a milestone discovery in the area of nanomaterial-based cancer treatments. Besides having tuneable absorption maxima at near infrared (NIR) range, AuNRs have superior absorption cross section at NIR frequencies compared with other gold nanoparticles. When this unique optical property is combined with the specificity against cancer cells used by affinity tag conjugations, AuNRs become one of the most important nanoparticles used in both cancer cell sensing and in therapy. In this review, the impact of size and shape control of nanoparticles, especially AuNRs, on cancer cell treatments and a range of aptamer-conjugated AuNR applications in this regard are reviewed.


Nano Research | 2015

Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery

Lei Mei; Guizhi Zhu; Liping Qiu; Cuichen Wu; Huapei Chen; Hao Liang; Sena Cansiz; Yifan Lv; Xiao-Bing Zhang; Weihong Tan

Cancer chemotherapy has been limited by its side effects and multidrug resistance (MDR), the latter of which is partially caused by drug efflux from cancer cells. Thus, targeted drug delivery systems that can circumvent MDR are needed. Here, we report multifunctional DNA nanoflowers (NFs) for targeted drug delivery to both chemosensitive and MDR cancer cells that circumvented MDR in both leukemia and breast cancer cell models. NFs are self-assembled via potential co-precipitation of DNA and magnesium pyrophosphate generated by rolling circle replication, during which NFs are incorporated using aptamers for specific cancer cell recognition, fluorophores for bioimaging, and doxorubicin (Dox)-binding DNA for drug delivery. NF sizes are tunable (down to ∼200 nm in diameter), and the densely packed drug-binding motifs and porous intrastructures endow NFs with a high drug-loading capacity (71.4%, wt/wt). Although the Doxloaded NFs (NF-Dox) are stable at physiological pH, drug release is facilitated under acidic or basic conditions. NFs deliver Dox into target chemosensitive and MDR cancer cells, preventing drug efflux and enhancing drug retention in MDR cells. NF-Dox induces potent cytotoxicity in both target chemosensitive cells and MDR cells, but not in nontarget cells, thus concurrently circumventing MDR and reducing side effects. Overall, these NFs are promising tools for circumventing MDR in targeted cancer therapy.


PLOS ONE | 2015

Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX.

Jiehua Xu; I-Ting Teng; Liqin Zhang; Stefanie Delgado; Carole Champanhac; Sena Cansiz; Cuichen Wu; Hong Shan; Weihong Tan

Most clinical cases of liver cancer cannot be diagnosed until they have evolved to an advanced stage, thus resulting in high mortality. It is well recognized that the implementation of early detection methods and the development of targeted therapies for liver cancer are essential to reducing the high mortality rates associated with this disease. To achieve these goals, molecular probes capable of recognizing liver cancer cell-specific targets are needed. Here we describe a panel of aptamers able to distinguish hepatocarcinoma from normal liver cells. The aptamers, which were selected by cell-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment), have Kd values in the range of 64-349 nM toward the target human hepatoma cell HepG2, and also recognize ovarian cancer cells and lung adenocarcinoma. The proteinase treatment experiment indicated that all aptamers could recognize target HepG2 cells through surface proteins. This outcome suggested that these aptamers could be used as potential probes for further research in cancer studies, such as developing early detection assays, targeted therapies, and imaging agents, as well as for the investigation of common membrane proteins in these distinguishable cancers.


Scientific Reports | 2015

Development of a panel of DNA Aptamers with High Affinity for Pancreatic Ductal Adenocarcinoma

Carole Champanhac; I-Ting Teng; Sena Cansiz; Liqin Zhang; Xiaoqiu Wu; Zilong Zhoa; Ting Fu; Weihong Tan

Pancreatic cancer costs nearly 40,000 lives in the U.S. each year and has one of the lowest survival rates among cancers. Effective treatment of pancreatic ductal adenocarcinoma is hindered by lack of a reliable biomarker. To address this challenge, aptamers were selected by cell-SELEX (Systematic Evolution of Ligands by EXponential enrichment) targeting human pancreatic ductal adenocarcinoma (PL45). Five promising aptamers presenting low Kd values and good specificity were generated. Among these five aptamers, one was tailored into a nanostructure carrying a high drug payload for specific drug delivery. The results show a viability of almost 80% for negative cells while only 50% of the target cells remained alive after 48 h incubation. These results lead to the conclusion that further research could reveal protein biomarkers specific to pancreatic adenocarcinoma, with probes available for early detection.

Collaboration


Dive into the Sena Cansiz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng Cui

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Liu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuo Wan

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Guizhi Zhu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge