Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seneca L. Bessling is active.

Publication


Featured researches published by Seneca L. Bessling.


Nature Protocols | 2006

Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish

Shannon Fisher; Elizabeth A. Grice; Ryan M. Vinton; Seneca L. Bessling; Akihiro Urasaki; Koichi Kawakami; Andrew S. McCallion

Evaluating the biological relevance of the myriad putative regulatory noncoding sequences in vertebrate genomes represents a huge challenge. Functional analyses in vivo have typically relied on costly and labor-intensive transgenic strategies in mice. Transgenesis has also been applied in nonrodent vertebrates, such as zebrafish, but until recently these efforts have been hampered by significant mosaicism and poor rates of germline transmission. We have developed a transgenic strategy in zebrafish based on the Tol2 transposon, a mobile element that was recently identified in another teleost, Medaka. This method takes advantage of the increased efficiency of genome integration that is afforded by this intact DNA transposon, activity that is mediated by the corresponding transposase protein. The approach described in this protocol uses a universal vector system that permits rapid incorporation of DNA that is tagged with sequence targets for site-specific recombination. To evaluate the regulatory potential of a candidate sequence, the desired interval is PCR-amplified using sequence-specific primers that are flanked by the requisite target sites for cloning, and recombined into a universal expression plasmid (pGW_cfosEGFP). Purified recombinant DNAs are then injected into 1–2-cell zebrafish embryos and the resulting reporter expression patterns are analyzed at desired timepoints during development. This system is amenable to large-scale application, facilitating rapid functional analysis of noncoding sequences from both mammalian and teleost species.


Nature Genetics | 2012

Mutations in the TGF-β Repressor SKI Cause Shprintzen-Goldberg Syndrome with Aortic Aneurysm

Alexander J. Doyle; Jefferson J. Doyle; Seneca L. Bessling; Samantha Maragh; Mark E. Lindsay; Dorien Schepers; Elisabeth Gillis; Geert Mortier; Tessa Homfray; Kimberly Sauls; Russell A. Norris; Nicholas D Huso; Dan Leahy; David W Mohr; Mark J. Caulfield; Alan F. Scott; A Destree; Raoul C. M. Hennekam; Pamela Arn; Cynthia J. Curry; Lut Van Laer; Andrew S. McCallion; Bart Loeys; Harry C. Dietz

Elevated transforming growth factor (TGF)-β signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). However, the location and character of many of the causal mutations in LDS intuitively imply diminished TGF-β signaling. Taken together, these data have engendered controversy regarding the specific role of TGF-β in disease pathogenesis. Shprintzen-Goldberg syndrome (SGS) has considerable phenotypic overlap with MFS and LDS, including aortic aneurysm. We identified causative variation in ten individuals with SGS in the proto-oncogene SKI, a known repressor of TGF-β activity. Cultured dermal fibroblasts from affected individuals showed enhanced activation of TGF-β signaling cascades and higher expression of TGF-β–responsive genes relative to control cells. Morpholino-induced silencing of SKI paralogs in zebrafish recapitulated abnormalities seen in humans with SGS. These data support the conclusions that increased TGF-β signaling is the mechanism underlying SGS and that high signaling contributes to multiple syndromic presentations of aortic aneurysm.


Genome Research | 2012

Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes

David U. Gorkin; Dongwon Lee; Xylena Reed; Christopher Fletez-Brant; Seneca L. Bessling; Stacie K. Loftus; Michael Beer; William J. Pavan; Andrew S. McCallion

We take a comprehensive approach to the study of regulatory control of gene expression in melanocytes that proceeds from large-scale enhancer discovery facilitated by ChIP-seq; to rigorous validation in silico, in vitro, and in vivo; and finally to the use of machine learning to elucidate a regulatory vocabulary with genome-wide predictive power. We identify 2489 putative melanocyte enhancer loci in the mouse genome by ChIP-seq for EP300 and H3K4me1. We demonstrate that these putative enhancers are evolutionarily constrained, enriched for sequence motifs predicted to bind key melanocyte transcription factors, located near genes relevant to melanocyte biology, and capable of driving reporter gene expression in melanocytes in culture (86%; 43/50) and in transgenic zebrafish (70%; 7/10). Next, using the sequences of these putative enhancers as a training set for a supervised machine learning algorithm, we develop a vocabulary of 6-mers predictive of melanocyte enhancer function. Lastly, we demonstrate that this vocabulary has genome-wide predictive power in both the mouse and human genomes. This study provides deep insight into the regulation of gene expression in melanocytes and demonstrates a powerful approach to the investigation of regulatory sequences that can be applied to other cell types.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Epistasis between RET and BBS mutations modulates enteric innervation and causes syndromic Hirschsprung disease

Loïc de Pontual; Norann A. Zaghloul; Sophie Thomas; Erica E. Davis; David M. McGaughey; Hélène Dollfus; Clarisse Baumann; Seneca L. Bessling; Candice Babarit; Anna Pelet; Cecilia Gascue; Philip L. Beales; Arnold Munnich; Stanislas Lyonnet; Heather Etchevers; Tania Attié-Bitach; Jose L. Badano; Andrew S. McCallion; Nicholas Katsanis; Jeanne Amiel

Hirschsprung disease (HSCR) is a common, multigenic neurocristopathy characterized by incomplete innervation along a variable length of the gut. The pivotal gene in isolated HSCR cases, either sporadic or familial, is RET. HSCR also presents in various syndromes, including Shah–Waardenburg syndrome (WS), Down (DS), and Bardet–Biedl (BBS). Here, we report 3 families with BBS and HSCR with concomitant mutations in BBS genes and regulatory RET elements, whose functionality is tested in physiologically relevant assays. Our data suggest that BBS mutations can potentiate HSCR predisposing RET alleles, which by themselves are insufficient to cause disease. We also demonstrate that these genes interact genetically in vivo to modulate gut innervation, and that this interaction likely occurs through complementary, yet independent, pathways that converge on the same biological process.


Pigment Cell & Melanoma Research | 2009

Gpnmb is a Melanoblast-Expressed, MITF-Dependent Gene

Stacie K. Loftus; Anthony Antonellis; Ivana Matera; Gabriel Renaud; Laura L. Baxter; Duncan Reid; Tyra G. Wolfsberg; Yidong Chen; Chenwei Wang; Megana K. Prasad; Seneca L. Bessling; Andrew S. McCallion; Eric D. Green; Dorothy C. Bennett; William J. Pavan

Expression profile analysis clusters Gpnmb with known pigment genes, Tyrp1, Dct, and Si. During development, Gpnmb is expressed in a pattern similar to Mitf, Dct and Si with expression vastly reduced in Mitf mutant animals. Unlike Dct and Si, Gpnmb remains expressed in a discrete population of caudal melanoblasts in Sox10‐deficient embryos. To understand the transcriptional regulation of Gpnmb we performed a whole genome annotation of 2,460,048 consensus MITF binding sites, and cross‐referenced this with evolutionarily conserved genomic sequences at the GPNMB locus. One conserved element, GPNMB‐MCS3, contained two MITF consensus sites, significantly increased luciferase activity in melanocytes and was sufficient to drive expression in melanoblasts in vivo. Deletion of the 5′‐most MITF consensus site dramatically reduced enhancer activity indicating a significant role for this site in Gpnmb transcriptional regulation. Future analysis of the Gpnmb locus will provide insight into the transcriptional regulation of melanocytes, and Gpnmb expression can be used as a marker for analyzing melanocyte development and disease progression.


Human Molecular Genetics | 2011

Steroid hormone modulation of RET through two estrogen responsive enhancers in breast cancer

Zachary E. Stine; David M. McGaughey; Seneca L. Bessling; Shengchao Li; Andrew S. McCallion

RET, a gene causatively mutated in Hirschsprung disease and cancer, has recently been implicated in breast cancer estrogen (E2) independence and tamoxifen resistance. RET displays both E2 and retinoic acid (RA)-dependent transcriptional modulation in E2-responsive breast cancers. However, the regulatory elements through which the steroid hormone transcriptional regulation of RET is mediated are poorly defined. Recent genome-wide chromatin immunoprecipitation-based studies have identified 10 putative E2 receptor-alpha (ESR1) and RA receptor alpha-binding sites at the RET locus, of which we demonstrate only two (RET -49.8 and RET +32.8) display significant E2 regulatory response when assayed independently in MCF-7 breast cancer cells. We demonstrate that endogenous RET expression and RET -49.8 regulatory activity are cooperatively regulated by E2 and RA in breast cancer cells. We identify key sequences that are required for RET -49.8 and RET +32.8 E2 responsiveness, including motifs known to be bound by ESR1, FOXA1 and TFAP2C. We also report that both RET -49.8 regulatory activity and endogenous RET expression are completely dependent on ESR1 for their (E2)-induction and that ESR1 is sufficient to mediate the E2-induced enhancer activity of RET -49.8 and RET +32.8. Finally, using zebrafish transgenesis, we also demonstrate that RET -49.8 directs reporter expression in the central nervous system and peripheral nervous system consistent with the endogenous ret expression. Taken collectively, these data suggest that RET transcription in breast cancer cells is modulated by E2 via ESR1 acting on multiple elements collectively.


Journal of Virology | 2014

Flexibility in surface-exposed loops in a virus capsid mediates escape from antibody neutralization.

Abimbola O. Kolawole; Ming Li; Chunsheng Xia; Audrey E. Fischer; Nicholas S. Giacobbi; Christine M. Rippinger; Jody B. Proescher; Susan K. Wu; Seneca L. Bessling; Monica Gamez; Chenchen Yu; Rebecca Zhang; Thomas S. Mehoke; James M. Pipas; Joshua T. Wolfe; Jeffrey S. Lin; Andrew B. Feldman; Thomas J. Smith; Christiane E. Wobus

ABSTRACT New human norovirus strains emerge every 2 to 3 years, partly due to mutations in the viral capsid that allow escape from antibody neutralization and herd immunity. To understand how noroviruses evolve antibody resistance, we investigated the structural basis for the escape of murine norovirus (MNV) from antibody neutralization. To identify specific residues in the MNV-1 protruding (P) domain of the capsid that play a role in escape from the neutralizing monoclonal antibody (MAb) A6.2, 22 recombinant MNVs were generated with amino acid substitutions in the A′B′ and E′F′ loops. Six mutations in the E′F′ loop (V378F, A382K, A382P, A382R, D385G, and L386F) mediated escape from MAb A6.2 neutralization. To elucidate underlying structural mechanisms for these results, the atomic structure of the A6.2 Fab was determined and fitted into the previously generated pseudoatomic model of the A6.2 Fab/MNV-1 virion complex. Previously, two distinct conformations, A and B, of the atomic structures of the MNV-1 P domain were identified due to flexibility in the two P domain loops. A superior stereochemical fit of the A6.2 Fab to the A conformation of the MNV P domain was observed. Structural analysis of our observed escape mutants indicates changes toward the less-preferred B conformation of the P domain. The shift in the structural equilibrium of the P domain toward the conformation with poor structural complementarity to the antibody strongly supports a unique mechanism for antibody escape that occurs via antigen flexibility instead of direct antibody-antigen binding. IMPORTANCE Human noroviruses cause the majority of all nonbacterial gastroenteritis worldwide. New epidemic strains arise in part by mutations in the viral capsid leading to escape from antibody neutralization. Herein, we identify a series of point mutations in a norovirus capsid that mediate escape from antibody neutralization and determine the structure of a neutralizing antibody. Fitting of the antibody structure into the virion/antibody complex identifies two conformations of the antibody binding domain of the viral capsid: one with a superior fit and the other with an inferior fit to the antibody. These data suggest a unique mode of antibody neutralization. In contrast to other viruses that largely escape antibody neutralization through direct disruption of the antibody-virus interface, we identify mutations that acted indirectly by limiting the conformation of the antibody binding loop in the viral capsid and drive the antibody binding domain into the conformation unable to be bound by the antibody.


Developmental Biology | 2010

Functionally conserved cis-regulatory elements of COL18A1 identified through zebrafish transgenesis

Erika Kague; Seneca L. Bessling; Josephine Lee; Gui Hu; Maria Rita Passos-Bueno; Shannon Fisher

Type XVIII collagen is a component of basement membranes, and expressed prominently in the eye, blood vessels, liver, and the central nervous system. Homozygous mutations in COL18A1 lead to Knobloch Syndrome, characterized by ocular defects and occipital encephalocele. However, relatively little has been described on the role of type XVIII collagen in development, and nothing is known about the regulation of its tissue-specific expression pattern. We have used zebrafish transgenesis to identify and characterize cis-regulatory sequences controlling expression of the human gene. Candidate enhancers were selected from non-coding sequence associated with COL18A1 based on sequence conservation among mammals. Although these displayed no overt conservation with orthologous zebrafish sequences, four regions nonetheless acted as tissue-specific transcriptional enhancers in the zebrafish embryo, and together recapitulated the major aspects of col18a1 expression. Additional post-hoc computational analysis on positive enhancer sequences revealed alignments between mammalian and teleost sequences, which we hypothesize predict the corresponding zebrafish enhancers; for one of these, we demonstrate functional overlap with the orthologous human enhancer sequence. Our results provide important insight into the biological function and regulation of COL18A1, and point to additional sequences that may contribute to complex diseases involving COL18A1. More generally, we show that combining functional data with targeted analyses for phylogenetic conservation can reveal conserved cis-regulatory elements in the large number of cases where computational alignment alone falls short.


BMC Developmental Biology | 2011

Identification of RNA binding motif proteins essential for cardiovascular development

Samantha Maragh; Ronald A. Miller; Seneca L. Bessling; David M. McGaughey; Marja W. Wessels; Bianca M. de Graaf; Eric A. Stone; Aida M. Bertoli-Avella; John D. Gearhart; Shannon Fisher; Andrew S. McCallion

BackgroundWe recently identified Rbm24 as a novel gene expressed during mouse cardiac development. Due to its tightly restricted and persistent expression from formation of the cardiac crescent onwards and later in forming vasculature we posited it to be a key player in cardiogenesis with additional roles in vasculogenesis and angiogenesis.ResultsTo determine the role of this gene in cardiac development, we have identified its zebrafish orthologs (rbm24a and rbm24b), and functionally evaluated them during zebrafish embryogenesis. Consistent with our underlying hypothesis, reduction in expression of either ortholog through injection of morpholino antisense oligonucleotides results in cardiogenic defects including cardiac looping and reduced circulation, leading to increasing pericardial edema over time. Additionally, morphant embryos for either ortholog display incompletely overlapping defects in the forming vasculature of the dorsal aorta (DA), posterior caudal vein (PCV) and caudal vein (CV) which are the first blood vessels to form in the embryo. Vasculogenesis and early angiogenesis in the trunk were similarly compromised in rbm24 morphant embryos at 48 hours post fertilization (hpf). Subsequent vascular maintenance was impaired in both rbm24 morphants with substantial vessel degradation noted at 72 hpf.ConclusionTaken collectively, our functional data support the hypothesis that rbm24a and rbm24b are key developmental cardiac genes with unequal roles in cardiovascular formation.


PLOS ONE | 2014

Rbm24a and Rbm24b are required for normal somitogenesis.

Samantha Maragh; Ronald A. Miller; Seneca L. Bessling; Guangliang Wang; Paul W. Hook; Andrew S. McCallion

We recently demonstrated that the gene encoding the RNA binding motif protein 24 (RBM24) is expressed during mouse cardiogenesis, and determined the developmental requirement for its zebrafish homologs Rbm24a and Rbm24b during cardiac development. We demonstrate here that both Rbm24a and Rbm24b are also required for normal somite and craniofacial development. Diminution of rbm24a or rbm24b gene products by morpholino knockdown resulted in significant disruption of somite formation. Detailed in situ hybridization-based analyses of a spectrum of somitogenesis-associated transcripts revealed reduced expression of the cyclic muscle pattering genes dlc and dld encoding Notch ligands, as well as their respective target genes her7, her1. By contrast expression of the Notch receptors notch1a and notch3 appears unchanged. Some RBM-family members have been implicated in pre-mRNA processing. Analysis of affected Notch-pathway mRNAs in rbm24a and rbm24b morpholino-injected embryos revealed aberrant transcript fragments of dlc and dld, but not her1 or her7, suggesting the reduction in transcription levels of Notch pathway components may result from aberrant processing of its ligands. These data imply a previously unknown requirement for Rbm24a and Rbm24b in somite and craniofacial development. Although we anticipate the influence of disrupting RBM24 homologs likely extends beyond the Notch pathway, our results suggest their perturbation may directly, or indirectly, compromise post-transcriptional processing, exemplified by imprecise processing of dlc and dld.

Collaboration


Dive into the Seneca L. Bessling's collaboration.

Top Co-Authors

Avatar

Andrew S. McCallion

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shannon Fisher

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samantha Maragh

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

William J. Pavan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric D. Green

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Grzegorz M. Burzynski

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge