Senem Yazici Guvenc
Yıldız Technical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Senem Yazici Guvenc.
Water Science and Technology | 2017
Senem Yazici Guvenc; Yusuf Okut; Mert Ozak; Birsu Haktanir; Mehmet Sinan Bilgili
In this study, process parameters in chemical oxygen demand (COD) and turbidity removal from metal working industry (MWI) wastewater were optimized by electrocoagulation (EC) using aluminum, iron and steel electrodes. The effects of process variables on COD and turbidity were investigated by developing a mathematical model using central composite design method, which is one of the response surface methodologies. Variance analysis was conducted to identify the interaction between process variables and model responses and the optimum conditions for the COD and turbidity removal. Second-order regression models were developed via the Statgraphics Centurion XVI.I software program to predict COD and turbidity removal efficiencies. Under the optimum conditions, removal efficiencies obtained from aluminum electrodes were found to be 76.72% for COD and 99.97% for turbidity, while the removal efficiencies obtained from iron electrodes were found to be 76.55% for COD and 99.9% for turbidity and the removal efficiencies obtained from steel electrodes were found to be 65.75% for COD and 99.25% for turbidity. Operational costs at optimum conditions were found to be 4.83, 1.91 and 2.91 €/m3 for aluminum, iron and steel electrodes, respectively. Iron electrode was found to be more suitable for MWI wastewater treatment in terms of operational cost and treatment efficiency.
Water Science and Technology | 2017
Senem Yazici Guvenc; Hanife Sari Erkan; Gamze Varank; Mehmet Sinan Bilgili; Guleda Onkal Engin
This study deals with chemical oxygen demand (COD), phenol and Ca+2 removal from paper mill industry wastewater by electrocoagulation (EC) and electro-Fenton (EF) processes. A response surface methodology (RSM) approach was employed to evaluate the effects and interactions of the process variables and to optimize the performance of both processes. Significant quadratic polynomial models were obtained (R2 = 0.959, R2 = 0.993 and R2 = 0.969 for COD, phenol and Ca+2 removal, respectively, for EC and R2 = 0.936, R2 = 0.934 and R2 = 0.890 for COD, phenol and Ca+2 removal, respectively). Numerical optimization based on desirability function was employed; in a 27.55 min trial, 34.7% of COD removal was achieved at pH 9 and current density 96 mA/cm2 for EC, whereas in a 30 min trial, 74.31% of COD removal was achieved at pH 2 and current density 96 mA/cm2 and H2O2/COD molar ratio 2.0 for EF. The operating costs were calculated to be 6.44 €/m3 for EC and 7.02 €/m3 for EF depending on energy and electrode consumption at optimum conditions. The results indicate that the RSM is suitable for the design and optimization of both of the processes. However, EF process was a more effective technology for paper mill industry wastewater treatment as compared with EC.
Waste Management & Research | 2017
Senem Yazici Guvenc; Burcu Alan; Elanur Adar; Mehmet Sinan Bilgili
The amount of nanoparticles released from industrial and consumer products has increased rapidly in the last decade. These products may enter landfills directly or indirectly after the end of their useful life. In order to determine the impact of TiO2 and Ag nanoparticles on aerobic landfilling processes, municipal solid waste was loaded to three pilot-scale aerobic landfill bioreactors (80 cm diameter and 350 cm height) and exposed to TiO2 (AT) and Ag (AA) nanoparticles at total concentrations of 100 mg kg−1 of solid waste. Aerobic landfill bioreactors were operated under the conditions about 0.03 L min−1 kg−1 aeration rate for 250 days, during which the leachate, solid waste, and gas characteristics were measured. The results indicate that there was no significant difference in the leachate characteristics, gas constituents, solid quality parameters, and temperature variations, which are the most important indicators of landfill operations, and overall aerobic degradation performance between the reactors containing TiO2 and Ag nanoparticles, and control (AC) reactor. The data also indicate that the pH levels, ionic strength, and the complex formation capacity of nanoparticles with Cl− ions can reduce the toxicity effects of nanoparticles on aerobic degradation processes. The results suggest that TiO2 and Ag nanoparticles at concentrations of 100 mg kg−1 of solid waste do not have significant impacts on aerobic biological processes and waste management systems.
Archive | 2019
Gamze Varank; Ahmet Adiller; Senem Yazici Guvenc; Elanur Adar; Ahmet Demir
One-dimensional (1D) advection–dispersion transport modeling was conducted as a conceptual approach for evaluation of organic (phenolic compounds) contaminant transport through alternative liner systems from leachate to groundwater. In this study, ten identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 290 days. The results of 1D transport model showed that the highest molecular diffusion coefficients for 2,3,4-TCP and 2,3,4,5-TeCP and PCP were determined to be with the average values of 54.25 × 10−9, 44.17 × 10−9, and 15.19 × 10−9 m2/sn and the lowest molecular diffusion coefficients for 2,4-DCP and 2,3,5-TCP were obtained to be with the average values of 1.107 × 10−9 and 1.115 × 10−9 m2/sn approximately in all reactor systems. The results indicate that liner systems have no significant effect on organic contaminant migration from leachate to groundwater and the dominant mechanism in transportation of organic contaminant is molecular diffusion and geomembrane layer is ineffective in organic contaminant transport through composite liners.
Separation Science and Technology | 2018
Gamze Varank; Senem Yazici Guvenc; Ahmet Demir
ABSTRACT In this study, response surface methodology was applied for food wastewater by electrocoagulation (EC) and electro-Fenton (EF) processes. The optimum conditions for the chemical oxygen demand (COD) removal were found to be 21.36 min, pH 10 and 86 mA/cm2 in EC, whereas 27.11 min, pH 2.38, 86 mA/cm2 and H2O2/COD:2 in EF process. COD removal efficiencies were determined to be 29.4% for EC and 59.1% for EF processes and higher than 99% total suspended solids removal efficiencies were achieved. It can be concluded that high COD removal was obtained (4998 mg/L COD removal by EC and 10,047 mg/L COD removal by EF).
Environmental Technology | 2017
Fatih Ilhan; Senem Yazici Guvenc; Yasar Avsar; Ugur Kurt; Mustafa Talha Gönüllü
ABSTRACT In this study, a bipolar membrane electrodialysis (BMED) process, which is thought to be an effective treatment method for leachate, was evaluated for leachates of three different ages (‘young’, ‘middle-aged’ and ‘elderly’). The leachates were pretreated to eliminate membrane fouling problems prior to the BMED process. Experimental studies were carried out to determine optimal operating conditions for the three differently aged leachates in the BMED process. According to the experiment results, there was a high removal efficiency of conductivity determined at 4 membrane – 25 V for young and elderly leachate and at 1 membrane – 25 V for middle-aged leachate. It was found that the operating times required to reach the optimal endpoints (at conductivity of about 2 mS/cm) of BMED process were 90, 180 and 300 min for the middle-aged, young and elderly leachates, respectively. Under the optimum operating conditions for the BMED process, removal efficiencies of conductivity and chemical oxygen demand were determined to be 89.5% and 60% for young, 82.5% and 30% for middle-aged and 91.8% and 26% for elderly leachate, respectively.
Desalination and Water Treatment | 2016
Gamze Varank; Senem Yazici Guvenc; Gokhan Gurbuz; Guleda Onkal Engin
Desalination and Water Treatment | 2017
Senem Yazici Guvenc
Desalination and Water Treatment | 2018
Hanife Sari Erkan; Senem Yazici Guvenc; Gamze Varank; Guleda Onkal Engin
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi | 2018
Gamze Varank; Ahmet Demir; Senem Yazici Guvenc; Mehmet Şükrü Özçoban