Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sengottayan Senthil-Nathan is active.

Publication


Featured researches published by Sengottayan Senthil-Nathan.


Frontiers in Physiology | 2013

Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects

Sengottayan Senthil-Nathan

This review described the physiological and biochemical effects of various secondary metabolites from Meliaceae against major Lepidopteran insect pest including, Noctuidae and Pyralidae. The biochemical effect of major Meliaceae secondary metabolites were discussed more in this review. Several enzymes based on food materials have critical roles in nutritional indices (food utilization) of the insect pest population. Several research work has been referred and the effect of Meliaceae secondary metabolites on feeding parameters of insects by demonstrating food consumption, approximate digestibility of consumed food, efficiency of converting the ingested food to body substance, efficiency of converting digested food to body substance and consumption index was reviewed in detail. Further how the digestive enzymes including a-Amylases, α and β-glucosidases (EC 3.2.1.1), lipases (EC 3.1.1) Proteases, serine, cysteine, and aspartic proteinases affected by the Meliaceae secondary metabolites was reviewed. Further effect of Meliaceae secondary metabolites on detoxifying enzymes have been found to react against botanical insecticides including general esterases (EST), glutathione S-transferase (GST) and phosphatases was reviewed. Alkaline phosphatase (ALP, E.C.3.1.3.1) and acid phosphatase (ACP, E.C.3.1.3.2) are hydrolytic enzymes, which hydrolyze phosphomonoesters under alkaline or acid conditions, respectively. These enzymes were affected by the secondary metabolites treatment. The detailed mechanism of action was further explained in this review. Acethylcholine esterase (AChE) is a key enzyme that terminates nerve impulses by catalyzing the hydrolysis of neurotransmitter, acetylcholine, in the nervous system of various organisms. How the AChE activity was altered by the Meliaceae secondary metabolites reviewed in detail.


Ecotoxicology and Environmental Safety | 2009

Toxicity and physiological effects of neem pesticides applied to rice on the Nilaparvata lugens Stål, the brown planthopper.

Sengottayan Senthil-Nathan; Man-Young Choi; Chae-Hoon Paik; Hong-Yul Seo; Kandaswamy Kalaivani

The effects of two different neem products (Parker Oil and Neema) on mortality, food consumption and survival of the brown planthopper, Nilaparvata lugens Stål (BPH) (Homoptera: Delphacidae) were investigated. The LC(50) (3.45 ml/L for nymph and 4.42 ml/L for adult in Parker Oil treatment; 4.18 ml/L for nymph and 5.63 ml/L for adult in Neema treatment) and LC(90) (8.72 ml/L for nymph and 11.1 ml/L for adult in Parker Oil treatment; 9.84 ml/L for nymph and 13.07 ml/L for adult in Neema treatment) were identified by probit analysis. The LC(90) (equal to recommended dose) was applied in the rice field. The effective concentration of both Parker Oil and Neema took more than 48 h to kill 80% of the N. lugens. Fourth instar nymph and adult female N. lugens were caged on rice plants and exposed to a series (both LC(50) and LC(90)) of neem concentrations. Nymph and adult female N. lugens that were chronically exposed to neem pesticides showed immediate mortality after application in laboratory experiment. The quantity of food ingested and assimilated by N. lugens on neem-treated rice plants was significantly less than on control rice plants. The results clearly indicate the neem-based pesticide (Parker Oil and Neema), containing low lethal concentration, can be used effectively to inhibit the growth and survival of N. lugens.


Archive | 2015

A Review of Biopesticides and Their Mode of Action Against Insect Pests

Sengottayan Senthil-Nathan

Biopesticides, including entomopathogenic viruses, bacteria, fungi, nematodes, and plant secondary metabolites, are gaining increasing importance as they are alternatives to chemical pesticides and are a major component of many pest control programs. The virulence of various biopesticides such as nuclear polyhedrosis virus (NPV), bacteria, and plant product were tested under laboratory conditions very successfully and the selected ones were also evaluated under field conditions with major success. Biopesticide products (including beneficial insects) are now available commercially for the control of pest and diseases. The overall aim of biopesticide research is to make these biopesticide products available at farm level at an affordable price, and this would become a possible tool in the integrated pest management strategy. Moreover, biopesticide research is still going on and further research is needed in many aspects including bioformulation and areas such as commercialization. There has been a substantial renewal of commercial interest in biopesticides as demonstrated by the considerable number of agreements between pesticide companies and bioproduct companies which allow the development of effective biopesticides in the market. This paper has reviewed the important and basic defection of major biopesticides in the past. The future prospects for the development of new biopesticides are also discussed.


Pesticide Biochemistry and Physiology | 2016

Toxicity of Alangium salvifolium Wang chemical constituents against the tobacco cutworm Spodoptera litura Fab.

Selvaraj Selin-Rani; Sengottayan Senthil-Nathan; Kannan Revathi; Rajamanickam Chandrasekaran; Annamalai Thanigaivel; Prabhakaran Vasantha-Srinivasan; Athirstam Ponsankar; Edward Sam Edwin; Venkatraman Pradeepa

Widespread use of synthetic pesticides has resulted in the development of insecticide-resistant populations of pests and harmful effects on human health and the environment. There is a need to identify alternative pest management strategies to reduce our reliance on conventional chemical pesticides. In recent years the use of botanical pesticides for protecting crops from insect pests has assumed greater importance. Methanol extract of Alangium salvifolium (L.f.) Wang has potential insecticidal activity against Spodoptera litura Fab. The active fractions were identified through chromatographic techniques as F-IV (Rf value=0.45) and F-VI (Rf value=0.63) and were subjected to GC-MS (GCMATE II). Fifty, 100 and 200ppm of active fractions were applied to fourth instar larvae and the mortality increased with higher concentrations. Relative consumption rate, relative growth rate, efficiency of conversion of ingested food and efficiency of conversion of digested food values all decreased in treated larvae, but approximate digestibility rate increased after treatment. The hydrolytic enzymes, such as acid phosphatase, alkaline phosphatase and the glycolytic enzyme lactate dehydrogenase were inhibited in treated larvae compared with controls. The histopathology study revealed that the epithelial columnar cells were enlarged, completely atrophied; intercellular spaces were swollen, and also noted a cytoplasmic ooze of cell material that mixed with food column. The present study clearly showed the active fractions from A. salvifolium as potential botanicals to control the larvae of S. litura. This is the first report for nutritional indices, enzymatic activities and histological effects of A. salvifolium chemical constituents against S. litura. Thus probably, this will be used as an alternative for synthetic pesticides against the polyphagous pest like S. litura.


Ecotoxicology and Environmental Safety | 2016

Target and non-target toxicity of botanical insecticide derived from Couroupita guianensis L. flower against generalist herbivore, Spodoptera litura Fab. and an earthworm, Eisenia foetida Savigny

Athirstam Ponsankar; Prabhakaran Vasantha-Srinivasan; Sengottayan Senthil-Nathan; Annamalai Thanigaivel; Edward-Sam Edwin; Selvaraj Selin-Rani; Kandaswamy Kalaivani; Wayne B. Hunter; Rocco T. Alessandro; Ahmed Abdel-Megeed; Chae-Hoon Paik; Veeramuthu Duraipandiyan; Naif Abdullah Al-Dhabi

Botanical insecticides may provide alternatives to synthetic insecticides for controlling Spodoptera litura (F.) and they are target specific, biodegradable, and harmless to mammals. Eight natural chemical compounds with larvicidal activity were identified from fraction F6 of C. guianensis flower extract. Probit analysis of 95% confidence level exposed an LC50 of 223ppm against S. litura third instar larvae. The growth and development of S. litura was affected in sub-lethal concentrations of fraction F6 (50, 100, 150 and 200ppm) compared to controls. Similarly nutritional indices values decreased significantly compared to controls. Fraction F6 also damaged the gut epithelial layer and brush border membrane (BBM). This study also resolved the effects of toxicity to non-target earthworm treated with fraction F6 and chemical pesticides (monotrophos and cypermethrin) and the results showed that fraction F6 had no harmful effect on E. fetida. Further, fraction F6 was eluted and sub fractions F6c (50ppm) showed high mortality against S. litura third instar larvae. Octacosane from fraction F6c was established and confirmed using IR spectrum and HPLC. The time of retention of fraction F6c was confirmed with the octacosane standard. Fraction F6 of C. guianensis extract caused dose-dependent mortality towards S. litura. Octacosane in fraction F6c was establish to be the prominent chemical compound associated with causing mortality but other compounds present in the fraction F6 were shown to be associated with changes in development of S. litura at low dosages. S. litura at low dosage. Therefore, these findings suggest that octacosane may be one of the major insecticidal compounds affecting S. litura survival.


Pesticide Biochemistry and Physiology | 2013

Effects of Bacillus subtilis metabolites on larval Aedes aegypti L

Kannan Revathi; Rajamanickam Chandrasekaran; Annamalai Thanigaivel; Suyambulingam Arunachalam Kirubakaran; Subbiah Sathish-Narayanan; Sengottayan Senthil-Nathan

The culture supernatant of a strain of Bacillus subtilis isolated from soil samples killed larvae of the mosquito Aedes aegypti. The metabolites produced by B. subtilis were characterized using high performance liquid chromatography (HPLC). Mortality rate was dose-dependent for all larval instars of A. aegypti. Log probit analysis (95% confidence level) revealed an LC50 of 1.73 and an LC90 3.71μg/ml. Molecular weights/masses of B. subtilis metabolites were confirmed using SDS-PAGE analysis. B. subtilis metabolites were confirmed using HPLC analysis. We demonstrate that secondary metabolites from B. subtilis have larvicidal activity against A. aegypti and may be suitable for the control of this and other mosquito vectors of human disease. The larvae to the metabolites, significant reduction in the activities of acetylcholinesterse, α-carboxylesterase, and acid phosphatases were recorded.


Acta Tropica | 2016

Anti-dengue efficacy of bioactive andrographolide from Andrographis paniculata (Lamiales: Acanthaceae) against the primary dengue vector Aedes aegypti (Diptera: Culicidae)

Edward-Sam Edwin; Prabhakaran Vasantha-Srinivasan; Sengottayan Senthil-Nathan; Annamalai Thanigaivel; Athirstam Ponsankar; Venkatraman Pradeepa; Selvaraj Selin-Rani; Kandaswamy Kalaivani; Wayne B. Hunter; Ahmed Abdel-Megeed; Veeramuthu Duraipandiyan; Naif Abdullah Al-Dhabi

The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management.


Scientific Reports | 2016

Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties

Kandaswamy Kalaivani; Marimuthu Maruthi Kalaiselvi; Sengottayan Senthil-Nathan

Methyl salicylate (MeSA) is a volatile organic compound synthesized from salicylic acid (SA) a plant hormone that helps to fight against plant disease. Seed treatment with MeSA, is an encouraging method to the seed industry to produce more growth and yield. The aim of our study is to find out the growth, development and disease tolerance of rice seed treated with different concentrations of MeSA. Also the seed treatments were studied to determine whether they directly influenced seedling emergence and growth in rice (Oryza sativa L) cultivars ‘IR 20, IR 50, IR 64, ASD 16, ASD 19 and ADT 46’ under greenhouse condition. MeSA seed treatments at 25, 50, 75 and 100 mg/L significantly increased seedling emergence. Effects were stronger in IR 50, and IR 64 and the effects were dose dependent, although the relationship between dose and effect was not always linear. MeSA seed treated rice plant against bacterial blight were analyzed. Bacterial blight was more effectively controlled by the seed treated with 100 mg/L than others. These results suggest that seed treatment with MeSA alters plant physiology in ways that may be useful for crop production as well as protection.


Pesticide Biochemistry and Physiology | 2016

Potential mode of action of a novel plumbagin as a mosquito repellent against the malarial vector Anopheles stephensi, (Culicidae: Diptera).

Venkatraman Pradeepa; Sengottayan Senthil-Nathan; Subbiah Sathish-Narayanan; Selvaraj Selin-Rani; Prabhakaran Vasantha-Srinivasan; Annamalai Thanigaivel; Athirstam Ponsankar; Edward-Sam Edwin; Muthiah Sakthi-Bagavathy; Kandaswamy Kalaivani; Kadarkarai Murugan; Veeramuthu Duraipandiyan; Naif Abdullah Al-Dhabi

Plumbagin was isolated and characterized from the roots of Plumbago zeylanica using chromatography: TLC, Column chromatogram, HPLC, FTIR and 1H NMR. The isolated pure compounds were assayed for potency as inhibitors of: acetylcholine esterase (AchE), glutathione S-transferases (GST), superoxide dismutase (SOD), cytochrome P450 and α, β-esterase, and for repellency with Anopheles stephensi at four different concentrations (25, 50, 75 and 100ppm). The enzyme assay against the pure compound reveals that the level of esterase and SOD was decreased significantly in contrast the level of GST and cytochrome P450 was increased significantly. Our results suggests that novel Plumbagin has significantly alters the level of enzyme comparable to the control. Evaluations resulted in Plumbagin producing maximum repellency scores against An. stephensi mosquitoes in dose dependent manner with highest repellence was observed in the 100ppm. Histological examination showed that the midgut, hindgut and muscles are the most affected tissues. These tissues affected with major changes including separation and collapse of epithelial layer and cellular vacuolization. The results support the utility of plant compound Plumbagin for vector control as an alternative to synthetic insecticides, however, more vigorous field trials are needed to determine viability under natural conditions.


Experimental Parasitology | 2015

Toxicity of aristolochic acids isolated from Aristolochia indica Linn (Aristolochiaceae) against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae)

Venkatraman Pradeepa; Subbiah Sathish-Narayanan; Suyambulingam Arunachalam Kirubakaran; Annamalai Thanigaivel; Sengottayan Senthil-Nathan

With the growth of resistance to overused insecticides, vector management has become highly problematic. Hence more concentration has been focused on botanicals. Therefore our present study was aimed to evaluate the toxicity of compounds, aristolochic acid I and aristolochic acid II from the methanol extract of Aristolochia indica L. (Aristolochiaceae) leaves on larvae of Anopheles stephensi L. (Diptera: Culicidae) employing World Health Organization standard larvicide testing procedures. The soxhlet extraction was carried out using polar solvent, methanol. The isolated toxic compounds were purified through RP-HPLC. The FTIR spectroscopic studies revealed different peak values with functional groups in the mixed compounds (AA-I and AA- II). These two aristolochic acids were further studied through (13)C and (1)HNMR analysis with confirmed by structures. Bioassay-guided fractionation through flash chromatography lead to the isolation of two larvicidal compounds namely aristolochic acid I and II. In these bioassays, the larvae were exposed to concentrations of 100, 250, 500,750 and 1000 ppm for each compound. Between the two, AA-I exerted no significant toxicity difference (P < 0.05) on mosquito larvae with LC₅₀- 171.3, 209.8, 269.1, 502.3 ppm and LC₉₀-751.6, 963.8, 972.7, 990.8 ppm compared to AA-II with LC₅₀-134.8, 166.7, 240.4,543.2 ppm and LC₉₀- 636.7, 792.5, 990.8, 986.2 ppm against first, second, third and fourth instars, respectively. Further, the isolated compounds were severely affecting the mosquito gut. From the results, A. indica toxic compounds could be considered as one of the influential applicant to bring about useful botanicals so as to prevent the resurrection of mosquito vectors.

Collaboration


Dive into the Sengottayan Senthil-Nathan's collaboration.

Top Co-Authors

Avatar

Annamalai Thanigaivel

Manonmaniam Sundaranar University

View shared research outputs
Top Co-Authors

Avatar

Kandaswamy Kalaivani

Manonmaniam Sundaranar University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Athirstam Ponsankar

Manonmaniam Sundaranar University

View shared research outputs
Top Co-Authors

Avatar

Selvaraj Selin-Rani

Manonmaniam Sundaranar University

View shared research outputs
Top Co-Authors

Avatar

Edward-Sam Edwin

Manonmaniam Sundaranar University

View shared research outputs
Top Co-Authors

Avatar

Wayne B. Hunter

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Muthiah Chellappandian

Manonmaniam Sundaranar University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge