Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Senji Shirasawa is active.

Publication


Featured researches published by Senji Shirasawa.


Cell | 2000

Opposing Effects of Ras on p53: Transcriptional Activation of mdm2 and Induction of p19ARF

Stefan Ries; Carola H. Biederer; Douglas Woods; Ohad Shifman; Senji Shirasawa; Takehiko Sasazuki; Martin McMahon; Moshe Oren; Frank McCormick

Mdm2 acts as a major regulator of the tumor suppressor p53 by targeting its destruction. Here, we show that the mdm2 gene is also regulated by the Ras-driven Raf/MEK/MAP kinase pathway, in a p53-independent manner. Mdm2 induced by activated Raf degrades p53 in the absence of the Mdm2 inhibitor p19ARF. This regulatory pathway accounts for the observation that cells transformed by oncogenic Ras are more resistant to p53-dependent apoptosis following exposure to DNA damage. Activation of the Ras-induced Raf/MEK/MAP kinase may therefore play a key role in suppressing p53 during tumor development and treatment. In primary cells, Raf also activates the Mdm2 inhibitor p19ARF. Levels of p53 are therefore determined by opposing effects of Raf-induced p19ARF and Mdm2.


Nature Genetics | 2005

A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities

Yuta Kochi; Ryo Yamada; Akari Suzuki; John B. Harley; Senji Shirasawa; Tetsuji Sawada; Sang-Cheol Bae; Shinya Tokuhiro; Xiaotian Chang; Akihiro Sekine; Atsushi Takahashi; Tatsuhiko Tsunoda; Yozo Ohnishi; Kenneth M. Kaufman; Changsoo Paul Kang; Changwon Kang; Shigeru Otsubo; Wako Yumura; Akio Mimori; Takao Koike; Yusuke Nakamura; Takehiko Sasazuki; Kazuhiko Yamamoto

Rheumatoid arthritis is a common autoimmune disease with a complex genetic etiology. Here we identify a SNP in the promoter region of FCRL3, a member of the Fc receptor-like family, that is associated with susceptibility to rheumatoid arthritis (odds ratio = 2.15, P = 0.00000085). This polymorphism alters the binding affinity of nuclear factor-κB and regulates FCRL3 expression. We observed high FCRL3 expression on B cells and augmented autoantibody production in individuals with the disease-susceptible genotype. We also found associations between the SNP and susceptibility to autoimmune thyroid disease and systemic lupus erythematosus. FCRL3 may therefore have a pivotal role in autoimmunity.


Cancer Cell | 2010

4E-BP1 Is a Key Effector of the Oncogenic Activation of the AKT and ERK Signaling Pathways that Integrates Their Function in Tumors

Qing-Bai She; Ensar Halilovic; Qing Ye; Wei Zhen; Senji Shirasawa; Takehiko Sasazuki; David B. Solit; Neal Rosen

PIK3CA and PTEN alterations are common in human cancer, but only a fraction of such tumors are dependent upon AKT signaling. AKT independence is associated with redundant activation of cap-dependent translation mediated by convergent regulation of the translational repressor 4E-BP1 by the AKT and ERK pathways. This provides mechanistic bases for the limited activity of AKT and MEK inhibitors in tumors with comutation of both pathways and the profound synergy observed with combined inhibition. Whereas such tumors are sensitive to a dominant active 4E-BP1 mutant, knockdown of 4E-BP1 expression reduces their dependence on AKT/ERK signaling for translation or survival. Thus, 4E-BP1 plays a prominent role in mediating the effects of these pathways in tumors in which they are activated by mutation.


Nature Neuroscience | 2004

Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates

Leping Cheng; Akiko Arata; Rumiko Mizuguchi; Ying Qian; Asanka Karunaratne; Paul A. Gray; Satoru Arata; Senji Shirasawa; Maxime Bouchard; Ping Luo; Chih-Li Chen; Meinrad Busslinger; Martyn Goulding; Hiroshi Onimaru; Qiufu Ma

Glutamatergic and GABAergic neurons mediate much of the excitatory and inhibitory neurotransmission, respectively, in the vertebrate nervous system. The process by which developing neurons select between these two cell fates is poorly understood. Here we show that the homeobox genes Tlx3 and Tlx1 determine excitatory over inhibitory cell fates in the mouse dorsal spinal cord. First, we found that Tlx3 was required for specification of, and expressed in, glutamatergic neurons. Both generic and region-specific glutamatergic markers, including VGLUT2 and the AMPA receptor Gria2, were absent in Tlx mutant dorsal horn. Second, spinal GABAergic markers were derepressed in Tlx mutants, including Pax2 that is necessary for GABAergic differentiation, Gad1/2 and Viaat that regulate GABA synthesis and transport, and the kainate receptors Grik2/3. Third, ectopic expression of Tlx3 was sufficient to suppress GABAergic differentiation and induce formation of glutamatergic neurons. Finally, excess GABA-mediated inhibition caused dysfunction of central respiratory circuits in Tlx3 mutant mice.


Journal of Clinical Investigation | 2010

Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus

Federica Di Nicolantonio; Sabrina Arena; Josep Tabernero; Stefano Grosso; Francesca Molinari; Teresa Macarulla; Mariangela Russo; Carlotta Cancelliere; Davide Zecchin; Luca Mazzucchelli; Takehiko Sasazuki; Senji Shirasawa; Massimo Geuna; Milo Frattini; José Baselga; Margherita Gallicchio; Stefano Biffo; Alberto Bardelli

Personalized cancer medicine is based on the concept that targeted therapies are effective on subsets of patients whose tumors carry specific molecular alterations. Several mammalian target of rapamycin (mTOR) inhibitors are in preclinical or clinical trials for cancers, but the molecular basis of sensitivity or resistance to these inhibitors among patients is largely unknown. Here we have identified oncogenic variants of phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA) and KRAS as determinants of response to the mTOR inhibitor everolimus. Human cancer cells carrying alterations in the PI3K pathway were responsive to everolimus, both in vitro and in vivo, except when KRAS mutations occurred concomitantly or were exogenously introduced. In human cancer cells with mutations in both PIK3CA and KRAS, genetic ablation of mutant KRAS reinstated response to the drug. Consistent with these data, PIK3CA mutant cells, but not KRAS mutant cells, displayed everolimus-sensitive translation. Importantly, in a cohort of metastatic cancer patients, the presence of oncogenic KRAS mutations was associated with lack of benefit after everolimus therapy. Thus, our results demonstrate that alterations in the KRAS and PIK3CA genes may represent biomarkers to optimize treatment of patients with mTOR inhibitors.


Nature Neuroscience | 2005

Lbx1 and Tlx3 are opposing switches in determining GABAergic versus glutamatergic transmitter phenotypes

Leping Cheng; Omar Abdel Samad; Yi Xu; Rumiko Mizuguchi; Ping Luo; Senji Shirasawa; Martyn Goulding; Qiufu Ma

Most neurons in vertebrates make a developmental choice between two principal neurotransmitter phenotypes (glutamatergic versus GABAergic). Here we show that the homeobox gene Lbx1 determines a GABAergic cell fate in the dorsal spinal cord at early embryonic stages. In Lbx1−/− mice, the presumptive GABAergic neurons are transformed into glutamatergic cells. Furthermore, overexpression of Lbx1 in the chick spinal cord is sufficient to induce GABAergic differentiation. Paradoxically, Lbx1 is also expressed in glutamatergic neurons. We previously reported that the homeobox genes Tlx1 and Tlx3 determine glutamatergic cell fate. Here we show that impaired glutamatergic differentiation, observed in Tlx3−/− mice, is restored in Tlx3−/−Lbx1−/− mice. These genetic studies suggest that Lbx1 expression defines a basal GABAergic differentiation state, and Tlx3 acts to antagonize Lbx1 to promote glutamatergic differentiation.


Nature Genetics | 2000

Rnx deficiency results in congenital central hypoventilation.

Senji Shirasawa; Akiko Arata; Hiroshi Onimaru; Kevin A. Roth; Gary A. J. Brown; Susan Horning; Satoru Arata; Koji Okumura; Takehiko Sasazuki; Stanley J. Korsmeyer

The genes Tlx1 (Hox11), Enx (Hox11L1, Tlx-2 ) and Rnx (Hox11L2, Tlx-3) constitute a family of orphan homeobox genes. In situ hybridization has revealed considerable overlap in their expression within the nervous system, but Rnx is singularly expressed in the developing dorsal and ventral region of the medulla oblongata. Tlx1-deficient and Enx-deficient mice display phenotypes in tissues where the mutated gene is singularly expressed, resulting in asplenogenesis and hyperganglionic megacolon, respectively. To determine the developmental role of Rnx, we disrupted the locus in mouse embryonic stem (ES) cells. Rnx-deficient mice developed to term, but all died within 24 hours after birth from a central respiratory failure. The electromyographic activity of intercostal muscles coupled with the C4 ventral root activity assessed in a medulla-spinal cord preparation revealed a high respiratory rate with short inspiratory duration and frequent apnea. Furthermore, a coordinate pattern existed between the abnormal activity of inspiratory neurons in the ventrolateral medulla and C4 motorneuron output, indicating a central respiratory defect in Rnx−/− mice. Thus, Rnx is critical for the development of the ventral medullary respiratory centre and its deficiency results in a syndrome resembling congenital central hypoventilation.


Cancer Research | 2008

Sensitization to the Lysosomal Cell Death Pathway by Oncogene-Induced Down-regulation of Lysosome-Associated Membrane Proteins 1 and 2

Nicole Fehrenbacher; Lone Bastholm; Thomas Kirkegaard-Sørensen; Bo Rafn; Trine Bøttzauw; Christina Nielsen; Ekkehard Weber; Senji Shirasawa; Tuula Kallunki; Marja Jäättelä

Expression and activity of lysosomal cysteine cathepsins correlate with the metastatic capacity and aggressiveness of tumors. Here, we show that transformation of murine embryonic fibroblasts with v-H-ras or c-src(Y527F) changes the distribution, density, and ultrastructure of the lysosomes, decreases the levels of lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in an extracellular signal-regulated kinase (ERK)- and cathepsin-dependent manner, and sensitizes the cells to lysosomal cell death pathways induced by various anticancer drugs (i.e., cisplatin, etoposide, doxorubicin, and siramesine). Importantly, K-ras and erbb2 elicit a similar ERK-mediated activation of cysteine cathepsins, cathepsin-dependent down-regulation of LAMPs, and increased drug sensitivity in human colon and breast carcinoma cells, respectively. Notably, reconstitution of LAMP levels by ectopic expression or by cathepsin inhibitors protects transformed cells against the lysosomal cell death pathway. Furthermore, knockdown of either lamp1 or lamp2 is sufficient to sensitize the cells to siramesine-induced cell death and photo-oxidation-induced lysosomal destabilization. Thus, the transformation-associated ERK-mediated up-regulation of cysteine cathepsin expression and activity leads to a decrease in the levels of LAMPs, which in turn contributes to the enhanced sensitivity of transformed cells to drugs that trigger lysosomal membrane permeabilization. These data indicate that aggressive cancers with high cysteine cathepsin levels are especially sensitive to lysosomal cell death pathways and encourage the further development of lysosome-targeting compounds for cancer therapy.


Cancer Research | 2005

Oncogenic K-RAS Is Required to Maintain Changes in Cytoskeletal Organization, Adhesion, and Motility in Colon Cancer Cells

Claire Pollock; Senji Shirasawa; Takehiko Sasazuki; Walter Kolch; Amardeep S. Dhillon

RAS oncogenes are thought to play a role at multiple stages of tumorigenesis. The role and mechanisms by which RAS oncogenes maintain the transformed state of human cancer cells are poorly understood. Here, we have studied the role of oncogenic K-RAS in maintaining cytoskeletal disruption, cell adhesion and motility in metastatic colon carcinoma cells. Targeted deletion of K-RAS(G13D) from HCT116 colon carcinoma cells restored their ability to assemble stress fibers and focal adhesions/complexes, accompanied by increased cell-matrix adhesion and reduced motility. We further show that oncogenic K-Ras induces high Rho activity, but uncouples Rho from stress fiber formation. This uncoupling required the maintenance of high levels of the activator protein-1 family member, Fra-1, via a mitogen-activated protein/extracellular signal-regulated kinase-dependent pathway. We also show that PI3-kinase signaling is required for the motility of HCT116 cells downstream of oncogenic K-Ras. Our findings suggest that mutated K-RAS oncogenes are essential for maintenance of the transformed and invasive phenotype of human colon cancer cells.


Gastroenterology | 2009

TGF-β Receptor Inactivation and Mutant Kras Induce Intestinal Neoplasms in Mice via a β-Catenin-Independent Pathway

Patty Trobridge; Sue E. Knoblaugh; M. Kay Washington; Nina M. Muñoz; Karen D. Tsuchiya; Andres Rojas; Xiaoling Song; Cornelia M. Ulrich; Takehiko Sasazuki; Senji Shirasawa; William M. Grady

BACKGROUND & AIMS During colorectal cancer pathogenesis, mutations and epigenetic events cause neoplastic behavior in epithelial cells by deregulating the Wnt, Ras-Raf-extracellular signal-regulated kinase (ERK), and transforming growth factor (TGF)-beta-signaling pathways, among others. The TGF-beta-signaling pathway is often inactivated in colon cancer cells by mutations in the gene encoding the TGF-beta receptor TGFBR2. The RAS-RAF-ERK pathway is frequently up-regulated in colon cancer via mutational activation of KRAS or BRAF. We assessed how these pathways interact in vivo and affect formation of colorectal tumors. METHODS We analyzed intestinal tumors that arose in mice that express an oncogenic (active) form of Kras and that have Tgfbr2 inactivations-2 common molecular events observed in human colorectal tumors. LSL-KrasG12D mice were crossed with Villin-Cre;Tgfbr2E2flx/E2flx mice, which do not express Tgfbr2 in the intestinal epithelium. RESULTS Neither inactivation of Tgfbr2 nor expression of oncogenic Kras alone was sufficient to induce formation of intestinal neoplasms. Histologic abnormalities arose in mice that expressed Kras, but only the combination of Tgfbr2 inactivation and Kras activation led to intestinal neoplasms and metastases. The cancers arose via a beta-catenin-independent mechanism; the epidermal growth factor-signaling pathway was also activated. Cells in the resulting tumors proliferated at higher rates, expressed decreased levels of p15, and expressed increased levels of cyclin D1 and cdk4, compared with control cells. CONCLUSIONS A combination of inactivation of the TGF-beta-signaling pathway and expression of oncogenic Kras leads to formation of invasive intestinal neoplasms through a beta-catenin-independent pathway; these adenocarcinomas have the capacity to metastasize.

Collaboration


Dive into the Senji Shirasawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge