Senlin Shi
Zhengzhou University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Senlin Shi.
PLOS ONE | 2014
Guidong Yao; Yimin Shu; Senlin Shi; Zhao-Feng Peng; Wenyan Song; Haixia Jin; Yingpu Sun
As one of the non-classical major histocompatibility complex(MHC)-1 antigens, Human Leukocyte Antigen G (HLA-G), has been suggested as a prognostic marker to identify the embryo developmental potential. In the present study, we investigated the potential roles of HLA-G in human spermatogenesis and early embryonic development. Quantitative real-time PCR analysis revealed that HLA-Gs expression was increased with increased Johnsen score in testicular tissues. There was no significant difference in HLA-G mRNA expression between testicular tissues with Johnsen score of 8–9 and normal sperm from ejaculated semen. HLA-G mRNA expression was detected in human zygotes, embryos and blastocysts but not in unfertilized oocytes. In testicular tissues where sperm was obtained by testicular sperm extraction (Johnsen score was 8 to 9), there were no correlations between HLA-G mRNA expression and fertilization, cleavage and high-quality embryo rates. At 48–72 h post-fertilization, HLA-G expression was higher in fast growing embryos. HLA-G specific siRNA injection into zygotes not only slowed down embryonic cleavage rate at 48 h post-fertilization, but also down-regulated the expression of embryo metabolism related gene (SLC2A1) and cell cycle-regulated gene (CCND2). Taken together, our findings suggested that HLA-G plays significant roles in human spermatogenesis and early embryonic development.
Reproduction, Fertility and Development | 2014
Haixia Jin; Yimin Shu; Shanjun Dai; Zhao-Feng Peng; Senlin Shi; Yingpu Sun
In this study we evaluated the value of short-time insemination and early rescue intra-cytoplasmic sperm injection (ICSI) in preventing the occurrence of complete fertilisation failure for mild or moderate male infertility patients. A total of 866 couples with borderline semen who underwent in vitro fertilisation treatment in 2010 were included. Regular insemination was performed between January and June of 2010 and short-term insemination was performed from July through December 2010, where, as early as 4h after insemination, oocytes were denuded from cumulus cells and extrusion of the second polar body was evaluated. Of the 4153 mature oocytes with a detectable second polar body 4 h after insemination, 3874 (93.3%) showed signs of fertilisation on Day 1. Where no second polar body was present in any of the retrieved oocytes for a given patient, rescue ICSI was performed immediately. Similar rates of normal fertilisation and percentage of good-quality embryos were obtained between early rescue ICSI and regular ICSI. Clinical pregnancy occurred in 16 of 43 patients (37.2%) receiving early rescue ICSI. Our results showed early rescue ICSI in combination with evaluation of the second polar body 4 h following insemination is an effective method to prevent complete fertilisation failure for patients with mild or moderate male infertility.
Fertility and Sterility | 2016
Qingyun Du; Enyin Wang; Yan Huang; Xiaoyi Guo; Yujing Xiong; Yiping Yu; Guidong Yao; Senlin Shi; Yingpu Sun
OBJECTIVE To evaluate the independent effects of the degree of blastocoele expansion and re-expansion and the inner cell mass (ICM) and trophectoderm (TE) grades on predicting live birth after fresh and vitrified/warmed single blastocyst transfer. DESIGN Retrospective study. SETTING Reproductive medical center. PATIENT(S) Women undergoing 844 fresh and 370 vitrified/warmed single blastocyst transfer cycles. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Live-birth rate correlated with blastocyst morphology parameters by logistic regression analysis and Spearman correlations analysis. RESULT(S) The degree of blastocoele expansion and re-expansion was the only blastocyst morphology parameter that exhibited a significant ability to predict live birth in both fresh and vitrified/warmed single blastocyst transfer cycles respectively by multivariate logistic regression and Spearman correlations analysis. Although the ICM grade was significantly related to live birth in fresh cycles according to the univariate model, its effect was not maintained in the multivariate logistic analysis. In vitrified/warmed cycles, neither ICM nor TE grade was correlated with live birth by logistic regression analysis. CONCLUSION(S) This study is the first to confirm that the degree of blastocoele expansion and re-expansion is a better predictor of live birth after both fresh and vitrified/warmed single blastocyst transfer cycles than ICM or TE grade.
Scientific Reports | 2016
Guidong Yao; Jiawei Xu; Zhimin Xin; Wenbin Niu; Senlin Shi; Haixia Jin; Wenyan Song; En-Yin Wang; Qingling Yang; Lei Chen; Yingpu Sun
Clinically discarded human embryos, which are generated from both normal and abnormal fertilizations, have the potential of developing into blastocysts. A total of 1,649 discarded human embryos, including zygotes containing normal (2PN) and abnormal (0PN, 1PN, 3PN and ≥4PN) pronuclei and prematurely cleaved embryos (2Cell), were collected for in vitro culture to investigate their developmental potential and chromosomal constitution using an SNP array-based chromosomal analysis. We found that blastocyst formation rates were 63.8% (for 2Cell embryos), 22.6% (2PN), 16.7% (0PN), 11.2% (3PN) and 3.6% (1PN). SNP array-based chromosomal analysis of the resultant blastocysts revealed that the percentages of normal chromosomes were 55.2% (2Cell), 60.7% (2PN), 44.4% (0PN) and 47.4% (0PN). Compared with clinical preimplantation genetic diagnosis (PGD) data generated with clinically acceptable embryos, results of the SNP array-based chromosome analysis on blastocysts from clinically discarded embryos showed similar values for the frequency of abnormal chromosome occurrence, aberrant signal classification and chromosomal distribution. The present study is perhaps the first systematic analysis of the developmental potential of clinically discarded embryos and provides a basis for future studies.
Scientific Reports | 2016
Feifei Zhao; Qingling Yang; Senlin Shi; Xiaoyan Luo; Yingpu Sun
Previous studies have shown that both density gradient centrifugation (DGC) and swim up (SU) procedures can select spermatozoa with longer telomeres for assisted reproduction techniques (ART). However, it is unknown which approach is more effective. The aim of the present study was to compare the effects of these two methods on sperm telomere length (STL). A total of 150 normozoospermic subjects were recruited. STL, DNA fragmentation index (DFI), reactive oxygen species (ROS) content and progressive motility of semen samples were detected before and after the procedures of DGC and SU. When compared to raw semen, the average length of sperm telomeres was significantly longer after the two sperm preparation methods. However, no significant difference was found between the DGC and SU procedures. We also found that semen prepared by the two methods had lower DNA fragmentation, ROS content and sperm progressive motility. However, no significant difference was found in those parameters between the two procedures. This is the first study that compares the effects of the DGC and SU procedures on STL, and the results show that both methods can recover a sperm population with longer STL and better DNA integrity for ART.
Cellular Physiology and Biochemistry | 2016
Wenyan Song; Zhao-Feng Peng; Xue‐mei Chen; Haixia Jin; Guidong Yao; Senlin Shi; Hong-Yi Yang; Xiangyang Zhang; Yingpu Sun
Background/Aims: To observe the effects of vitrification on spindle, zona pellucida, embryonic aneuploidy and DNA injury in in vivo-maruted, in vitro-mature and immature human oocytes. Methods: Between January 2009 and February 2015, 223 immature oocytes from 450 infertile patients, and 31 in vivo-mature oocytes from 3 infertile couples were collected. Of the 223 immature oocytes, 113 were used for in vitro culture before vitrification. Some oocytes were randomly divided into in vivo-mature group (group A, n = 15), in vitro-mature group (group B, n = 88) and immature group (group C, n = 85), and then the oocytes with spindle in these three groups after freezing-thawing were selected to use for Polscope imaging, embryonic aneuploidy screening and embryo development evaluation. Other oocytes were randomly divided into group A (n = 16), group B (n = 25) and group C (n = 25) for detecting DNA injury. Results: After thawing, spindle occurrence rate, spindle Retardance value, and cleavage rate were significantly higher in groups A and B than in group C (all P < 0.05), but there were no statistical differences in fertility rate, high-quality embryo rate, blastulation rate and aneuploidy rate amongst the three groups (all P > 0.05). Zona pellucida density (ZPD) was significantly lower in group A than in groups B and C both before and after vitrification (all P < 0.05). ZPD was significantly higher after thawing than before vitrification (all P < 0.05), but zona pellucida thickness (ZPT) was not significantly changed in all the three groups (all P > 0.05). Rate of comet cells was significantly lower in group A than in groups B and C (all P < 0.01). Comet tail was significantly longer in group C than in groups B and A (all P < 0.05). Conclusion: In vivo- and in vitro-mature human oocytes are more suitable to vitrification than immature human oocytes. Spindle Retardance value has more predictive value for embryonic development potential than ZPD and ZPT.
Systems Biology in Reproductive Medicine | 2015
Haixia Jin; Shanjun Dai; Wenyan Song; Guidong Yao; Senlin Shi; Yingpu Sun
Abstract We explored the embryo development potential of human three-pronuclear (3PN) zygotes reduced to two-pronuclear (2PN) zygotes (3 → 2PN zygotes) by micropuncture. In this study, there were three groups, the 3 → 2PN group (338 zygotes), the non-corrected 3PN group (381 zygotes), and the normal 2PN group (359 zygotes). The first cleavage mode (2-cell cleavage or 3-cell cleavage), 6–8 cell embryogenesis rate, high-quality embryogenesis rate and Day 5/Day 6 blastulation rate were compared between the three groups. The success rate of enucleation was 92.9%. The 2-cell cleavage rate was significantly higher in the 3 → 2PN group (74.3%) than in the 3PN group (36.4%) (P < 0.05), but had no statistical difference compared with the 2PN group (86.0%) (P > 0.05). The 6–8 cell embryogenesis rate was significantly higher in the 3 → 2PN group (91.1%) as compared to the 2PN group (85.6%) (P < 0.05), but had no statistical difference compared with the 3PN group (95.0%) (P > 0.05). Total blastulation rate was significantly higher in the 2PN group (58.8%) as compared to the 3PN group (21.5%) (P < 0.01), and in the 3 → 2PN group as compared to the 3PN group (5.6%) (P < 0.01). Also D5 blastulation rate was significantly higher in the 2PN group (53.7%) as compared to the 3 → 2PN group (8.9%) (P < 0.01), and in the 3 → 2PN group as compared to the 3PN group (1.9%) (P < 0.01). In 3 → 2PN zygotes, the first cleavage mode is mainly 2 cells which is significantly higher than that in 3PN zygotes. Compared with 3PN zygotes, the embryo developmental potential of 3 → 2PN zygotes is improved, but still is lower than that in 2PN zygotes.
Reproductive Biomedicine Online | 2015
Guidong Yao; Senlin Shi; Wenyan Song; Haixia Jin; Zhao-Feng Peng; Hong-Yi Yang; En-Yin Wang; Yingpu Sun
Spermatogenesis, fertilization and subsequent embryonic development are complex processes that require tight regulation. The PAFAH1B1 gene plays important roles in these reproductive events in mice, but its expression and roles in human reproduction have not been investigated. Expression analysis of testicular tissue by reverse transcription quantitative PCR and immunohistochemistry revealed varied expression levels among samples of different spermatogenic abilities (as assessed by the Johnsen score), with protein expression restricted to spermatogonia, spermatocytes and spermatids. Immunofluorescence on spermatozoa showed expression over the acrosome and midpiece regions of ejaculated samples, whereas a high proportion of percutaneous epididymal sperm aspiration-derived spermatozoa showed expression restricted to the midpiece. Analysis for PAFAH1B1 mRNA also revealed different expression levels among unfertilized oocytes, zygotes, cleavage stage embryos and blastocysts, with protein localized at the membrane level in oocytes and zygotes, and gradually distributing within the cytoplasm of cleavage stage embryos and blastocysts. Interestingly, microinjection of PAFAH1B1 siRNA into zygotes significantly (P = 0.024) increased fragmentation formation rates in subsequent embryonic development stages. Altogether, these are the first results to support a role for PAFAH1B1 in human spermatogenesis and early embryonic development.
Cell Biology International | 2013
Wenyan Song; Zhimin Xin; Haixia Jin; Zhao-Feng Peng; Xue‐mei Chen; Senlin Shi; Shanjun Dai; Yingpu Sun
Better pregnancy outcomes can be obtained by human mature oocyte vitrification, but many problems remain to be resolved in human mature oocyte vitrification. Since mature oocyte development possesses its own maturity cycle, there should be the optimal timing for mature oocyte vitrification. The purpose of this study was to observe the effects of frozen timing on the spindle density, the angle between the polar body and spindle, and embryo development of intracytoplasmic sperm injection (ICSI) in vitrified mouse mature oocytes and explore its possible mechanism. Mouse oocytes were randomly divided into three groups according to different frozen timing including Groups A, B, and C in which oocytes were vitrified within 2 h after ovum pick‐up, and 3–4 and 5–6 h after ovum pick‐up, respectively. Spindle‐related parameters were measured, ICSI was performed. The spindle occurrence rate of vitrified‐thawed oocytes was 98.4% in Group A, 82.3% in Group B, and 75.8% in Group C, without statistical differences between pre‐vitrification and post‐thawing and among the three groups (P > 0.05). The angles between the polar body and spindle were larger after thawing than before vitrification (P < 0.01). The spindle retardance values were lower after thawing than before vitrification in Groups B and C (P < 0.05), but higher in Group A (P < 0.05). The spindle retardance values before vitrification were higher in Group B than in Groups A and C (P < 0.05), but the spindle retardance value, oocyte survival and two‐cell rate after thawing were higher in Group A than in Groups B and C (P < 0.05). There were no statistical differences in ICSI fertility rate between the three groups (P > 0.05). The damage on the spindle is the slightest and embryo quality is the highest in the mouse oocytes vitrified within 2 h after ovum pick‐up. The spindle retardance value is more valuable than the spindle occurrence rate in the evaluation of vitrified‐thawed oocyte quality, and is positively correlated with embryo quality.
Cell Proliferation | 2017
Wenyan Song; Hui Meng; Xuegai Wang; Haixia Jin; Guidong Yao; Senlin Shi; Liang Wu; Xiangyang Zhang; Yingpu Sun
Human mutL homologl (MLH1) works coordinately in sequential steps to initiate repair of DNA mismatches, and aberrant MLH1 expression is related to spermatogenetic malfunction. In the present study, MLH1 expression in patients with azoospermia was investigated, and moderating effects of miR‐188‐3p on MLH1 expression and spermatogenesis were identified.