Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Senthilvelan Manohar is active.

Publication


Featured researches published by Senthilvelan Manohar.


Neuroscience | 2009

Differential expression of apoptosis-related genes in the cochlea of noise-exposed rats

Bo Hua Hu; Qunfeng Cai; Senthilvelan Manohar; Haiyan Jiang; Dalian Ding; Donald Coling; Guiliang Zheng; Richard Salvi

Exposure to intense noise induces apoptosis in hair cells in the cochlea. To identify the molecular changes associated with noise-induced apoptosis, we used quantitative real-time PCR to evaluate the changes in 84 apoptosis-related genes in cochlear samples from the sensory epithelium and lateral wall. Sprague-Dawley rats exposed to a continuous noise at 115 dB SPL for 2 h. The exposure caused a 40-60 dB threshold shift 4 h post-exposure that decreased to 20-30 dB 7 days post-exposure. These functional changes were associated with apoptotic markers including nuclear condensation and fragmentation and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Immediately after the noise exposure, 12 genes were downregulated, whereas only one gene (Traf4) was upregulated. At 4 h post-exposure, eight genes were upregulated; three (Tnrsf1a, Tnfrsf1b, Tnfrst5) belonged to the Tnfrsf family, three (Bir3, Mcl1 and Prok2) have anti-apoptotic properties and one (Gadd45a) is a target of p53. At 7 days post-exposure, all the upregulated genes returned to pre-noise levels. Interestingly, the normal control cochlea had high constitutive levels of several apoptosis-related genes. These constitutively expressed genes, together with the inducible genes, may participate in the induction of cochlear apoptotic activity.


Brain Research | 2012

Amygdala hyperactivity and tonotopic shift after salicylate exposure

Guang-Di Chen; Senthilvelan Manohar; Richard Salvi

The amygdala, important in forming and storing memories of aversive events, is believed to play a major role in debilitating tinnitus and hyperacusis. To explore this hypothesis, we recorded from the lateral amygdala (LA) and auditory cortex (AC) before and after treating rats with a dose of salicylate that induces tinnitus and hyperacusis-like behavior. Salicylate unexpectedly increased the amplitude of the local field potential (LFP) in the LA making it hyperactive to sounds≥60 dB SPL. Frequency receptive fields (FRFs) of multiunit (MU) clusters in the LA were also dramatically altered by salicylate. Neuronal activity at frequencies below 10 kHz and above 20 kHz was depressed at low intensities, but was greatly enhanced for stimuli between 10 and 20 kHz (frequencies near the pitch of the salicylate-induced tinnitus in the rat). These frequency-dependent changes caused the FRF of many LA neurons to migrate towards 10-20 kHz thereby amplifying activity from this region. To determine if salicylate-induced changes restricted to the LA would remotely affect neural activity in the AC, we used a micropipette to infuse salicylate (20 μl, 2.8 mM) into the amygdala. Local delivery of salicylate to the amygdala significantly increased the amplitude of the LFP recorded in the AC and selectively enhanced the neuronal activity of AC neurons at the mid-frequencies (10-20 kHz), frequencies associated with the tinnitus pitch. Taken together, these results indicate that systemic salicylate treatment can induce hyperactivity and tonotopic shift in the amygdala and infusion of salicylate into the amygdala can profoundly enhance sound-evoked activity in AC, changes likely to increase the perception and emotional salience of tinnitus and loud sounds. This article is part of a Special Issue entitled: Tinnitus Neuroscience.


Neural Plasticity | 2014

Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Nonclassical Auditory Centers in Rats

Guang-Di Chen; Kelly E. Radziwon; Nina Kashanian; Senthilvelan Manohar; Richard Salvi

Previous studies have shown that sodium salicylate (SS) activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus). The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus.


Brain Research | 2012

Understanding tinnitus: The dorsal cochlear nucleus, organization and plasticity

Joan S. Baizer; Senthilvelan Manohar; Nicholas A. Paolone; Nadav Weinstock; Richard Salvi

Tinnitus, the perception of a phantom sound, is a common consequence of damage to the auditory periphery. A major goal of tinnitus research is to find the loci of the neural changes that underlie the disorder. Crucial to this endeavor has been the development of an animal behavioral model of tinnitus, so that neural changes can be correlated with behavioral evidence of tinnitus. Three major lines of evidence implicate the dorsal cochlear nucleus (DCN) in tinnitus. First, elevated spontaneous activity in the DCN is correlated with peripheral damage and tinnitus. Second, there are somatosensory inputs to the DCN that can modulate spontaneous activity and might mediate the somatic-auditory interactions seen in tinnitus patients. Third, we have found a subpopulation of DCN neurons in the adult rat that express doublecortin, a plasticity-related protein. The expression of this protein may reflect a role of these neurons in the neural reorganization causing tinnitus. However, there is a problem in extending the findings in the rodent DCN to humans. Classic studies state that the structure of the primate DCN is quite different from that of rodents, with primates lacking granule cells, the recipients of somatosensory input. To address the possibility of major species differences in DCN organization, we compared Nissl-stained sections of the DCN in five different species. In contrast to earlier reports, our data suggest that the organization of the primate DCN is not dramatically different from that of the rodents, and validate the use of animal data in the study of tinnitus. This article is part of a Special Issue entitled: Tinnitus Neuroscience.


Neuroscience | 2012

Expression of doublecortin, a neuronal migration protein, in unipolar brush cells of the vestibulocerebellum and dorsal cochlear nucleus of the adult rat

Senthilvelan Manohar; Nicholas A. Paolone; Marni Bleichfeld; Sarah H. Hayes; Richard Salvi; Joan S. Baizer

Doublecortin (DCX) is a microtubule-associated protein that is critical for neuronal migration and the development of the cerebral cortex. In the adult, it is expressed in newborn neurons in the subventricular and subgranular zones, but not in the mature neurons of the cerebral cortex. By contrast, neurogenesis and neuronal migration of cells in the cerebellum continue into early postnatal life; migration of one class of cerebellar interneuron, unipolar brush cells (UBCs), may continue into adulthood. To explore the possibility of continued neuronal migration in the adult cerebellum, closely spaced sections through the brainstem and cerebellum of adult (3-16 months old) Sprague-Dawley rats were immunolabeled for DCX. Neurons immunoreactive (ir) to DCX were present in the granular cell layer of the vestibulocerebellum, most densely in the transition zone (tz), the region between the flocculus (FL) and ventral paraflocculus (PFL), as well as in the dorsal cochlear nucleus (DCN). These DCX-ir cells had the morphological appearance of UBCs with oval somata and a single dendrite ending in a brush. There were many examples of colocalization of DCX with Eps8 or calretinin, UBC markers. We also identified DCX-ir elements along the fourth ventricle and its lateral recess that had labeled somata but lacked the dendritic structure characteristic of UBCs. Labeled UBCs were seen in nearby white matter. These results suggest that there may be continued neurogenesis and/or migration of UBCs in the adult. Another possibility is that UBCs maintain DCX expression even after migration and maturation, reflecting a role of DCX in adult neuronal plasticity in addition to a developmental role in migration.


Neurobiology of Aging | 2012

Expression pattern of oxidative stress and antioxidant defense-related genes in the aging Fischer 344/NHsd rat cochlea

Chiemi Tanaka; Donald Coling; Senthilvelan Manohar; Guang-Di Chen; Bo Hua Hu; Richard Salvi; Donald Henderson

The biological mechanisms that give rise to age-related hearing loss (ARHL) are still poorly understood. However, there is growing recognition that oxidative stress may be an important factor. To address this issue, we measured the changes in the expression of cochlear oxidative stress and antioxidant defense-related genes in young (2 months old), middle-aged (12 months old), and old (21-25 months old) Fischer 344/NHsd (F344/NHsd) rats and compared gene expression changes with ARHL. A quantitative real-time reverse transcription polymerase chain reaction array revealed a significant age-related downregulation of only 1 gene, stearoyl-coenzyme A desaturase 1, and upregulation of 12 genes: 24-dehydrocholesterol reductase; aminoadipate-semialdehyde synthase; cytoglobin; dual oxidase 2; glutathione peroxidase 3; glutathione peroxidase 6; glutathione S-transferase, kappa 1; glutathione reductase; nicotinamide adenine dinucleotide phosphate (NAD(P)H) dehydrogenase, quinone 1; solute carrier Family 38, Member 5; thioredoxin interacting protein; and vimentin. Statistical analyses revealed significant correlations between gene expression and auditory function in 8 genes. Our results identified specific subsets of oxidative stress genes that appear to play an important role in ARHL in the Fischer 344/NHsd rat.


Neurotoxicity Research | 2013

Salicylate Selectively Kills Cochlear Spiral Ganglion Neurons by Paradoxically Up-regulating Superoxide

Lili Deng; Dalian Ding; Jiping Su; Senthilvelan Manohar; Richard Salvi

Aspirin and its active ingredient salicylate are potent antioxidants that have been reported to be neuro- and otoprotective. However, when consumed in large quantities, these drugs can cause temporary hearing loss and tinnitus. Moreover, recent studies indicate that after several days of treatment, salicylate selectively destroys the spiral ganglion neurons and auditory nerve fibers that relay sounds from the sensory hair cells to the brain. Why salicylate selectively damages spiral ganglion neurons while sparing the hair cells and supports cells is unclear. Here we show that high dose of salicylate trigger an apoptotic response in spiral ganglion neurons characterized morphologically by soma shrinkage and nuclear condensation and fragmentation plus activation of extrinsic initiator caspase-8 and intrinsic initiator caspase-9 several days after the onset of drug treatment. Salicylate treatment triggered an upsurge in the toxic superoxide radical only in spiral ganglion neurons, but not in neighboring hair cells and support cells. Mn TMPyP pentachloride, a cell permeable scavenger of superoxide blocked the expression of superoxide staining in spiral ganglion neurons and almost completely blocked the damage to the nerve fibers and spiral ganglion neurons. NMDA receptor activation is known to increase neuronal superoxide levels. Since NMDA receptors are mainly found on spiral ganglion neurons and since salicylate enhances NMDA receptor currents, the selective killing of spiral ganglion neurons is likely a consequence of enhanced and sustained activation of NMDA receptors by salicylate.


The Journal of Neuroscience | 2016

Effects of Long-Term Exercise on Age-Related Hearing Loss in Mice.

Chul Han; Dalian Ding; Maria-Cecilia Lopez; Senthilvelan Manohar; Yanping Zhang; Mi-Jung Kim; Hyo-Jin Park; Karessa White; Yong Hwan Kim; Paul J. Linser; Masaru Tanokura; Christiaan Leeuwenburgh; Henry V. Baker; Richard Salvi; Shinichi Someya

Regular physical exercise reduces the risk for obesity, cardiovascular diseases, and disability and is associated with longer lifespan expectancy (Taylor et al., 2004; Pahor et al., 2014; Anton et al., 2015; Arem et al., 2015). In contrast, decreased physical function is associated with hearing loss among older adults (Li et al., 2013; Chen et al., 2015). Here, we investigated the effects of long-term voluntary wheel running (WR) on age-related hearing loss (AHL) in CBA/CaJ mice, a well established model of AHL (Zheng et al., 1999). WR activity peaked at 6 months of age (12,280 m/d) and gradually decreased over time. At 24 months of age, the average WR distance was 3987 m/d. Twenty-four-month-old runners had less cochlear hair cell and spiral ganglion neuron loss and better auditory brainstem response thresholds at the low and middle frequencies compared with age-matched, non-WR controls. Gene ontology (GO) enrichment analysis of inner ear tissues from 6-month-old controls and runners revealed that WR resulted in a marked enrichment for GO gene sets associated with immune response, inflammatory response, vascular function, and apoptosis. In agreement with these results, there was reduced stria vascularis (SV) atrophy and reduced loss of capillaries in the SV of old runners versus old controls. Given that SV holds numerous capillaries that are essential for transporting oxygen and nutrients into the cochlea, our findings suggest that long-term exercise delays the progression of AHL by reducing age-related loss of strial capillaries associated with inflammation. SIGNIFICANCE STATEMENT Nearly two-thirds of adults aged 70 years or older develop significant age-related hearing loss (AHL), a condition that can lead to social isolation and major communication difficulties. AHL is also associated with decreased physical function among older adults. In the current study, we show that regular exercise slowed AHL and cochlear degeneration significantly in a well established murine model. Our data suggest that regular exercise delays the progression of AHL by reducing age-related loss of strial capillaries associated with inflammation.


Neuroscience | 2015

Effects of acoustic trauma on the auditory system of the rat: The role of microglia.

Joan S. Baizer; Keit Men Wong; Senthilvelan Manohar; Sarah H. Hayes; Dalian Ding; Robert Dingman; Richard Salvi

Exposure to loud, prolonged sounds (acoustic trauma, AT) leads to the death of both inner and outer hair cells (IHCs and OHCs), death of neurons of the spiral ganglion and degeneration of the auditory nerve. The auditory nerve (8cn) projects to the three subdivisions of the cochlear nuclei (CN), the dorsal cochlear nucleus (DC) and the anterior (VCA) and posterior (VCP) subdivisions of the ventral cochlear nucleus (VCN). There is both anatomical and physiological evidence for plastic reorganization in the denervated CN after AT. Anatomical findings show axonal sprouting and synaptogenesis; physiologically there is an increase in spontaneous activity suggesting reorganization of circuitry. The mechanisms underlying this plasticity are not understood. Recent data suggest that activated microglia may have a role in facilitating plastic reorganization in addition to removing trauma-induced debris. In order to investigate the roles of activated microglia in the CN subsequent to AT we exposed animals to bilateral noise sufficient to cause massive hair cell death. We studied four groups of animals at different survival times: 30 days, 60 days, 6 months and 9 months. We used silver staining to examine the time course and pattern of auditory nerve degeneration, and immunohistochemistry to label activated microglia in the denervated CN. We found both degenerating auditory nerve fibers and activated microglia in the CN at 30 and 60 days and 6 months after AT. There was close geographic overlap between the degenerating fibers and activated microglia, consistent with a scavenger role for activated microglia. At the longest survival time, there were still silver-stained fibers but very little staining of activated microglia in overlapping regions. There were, however, activated microglia in the surrounding brainstem and cerebellar white matter.


Neuroscience | 2014

Dissociation of doublecortin expression and neurogenesis in unipolar brush cells in the vestibulocerebellum and dorsal cochlear nucleus of the adult rat.

Nicholas A. Paolone; Senthilvelan Manohar; Sarah H. Hayes; Keit Men Wong; Richard Salvi; Joan S. Baizer

We have previously shown expression of the protein doublecortin (DCX) in unipolar brush cells (UBCs) in the dorsal cochlear nucleus and vestibulocerebellum of the adult rat. We also saw DCX-immunoreactive elements with the appearance of neuroblasts around the fourth ventricle. Expression of DCX is seen in newborn and migrating neurons and hence considered a correlate of neurogenesis. There were two interpretations of the expression of DCX in UBCs. One possibility is that there might be adult neurogenesis of this cell population. Adult neurogenesis is now well-established, but only for the dentate gyrus of the hippocampus and the subventricular zone. The other possibility is that there is prolonged expression of DCX in adult UBCs that may signal a unique role in plasticity of these neurons. We tested the neurogenesis hypothesis by systemic injections of bromodeoxyuridine (BrdU), a thymidine analog, followed by immunohistochemistry to examine the numbers and locations of dividing cells. We used several different injection paradigms, varying the dose of BrdU, the number of injections and the survival time to assess the possibility of neuronal birth and migration. We saw BrdU-labeled cells in the cerebellum and brainstem; cell division in these regions was confirmed by immunohistochemistry for the protein Ki67. However, neither the numbers nor the distribution of labeled nuclei support the idea of adult neurogenesis and migration of UBCs. The function of DCX expression in UBCs in the adult remains to be understood.

Collaboration


Dive into the Senthilvelan Manohar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Sun

University at Buffalo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Hua Hu

University at Buffalo

View shared research outputs
Researchain Logo
Decentralizing Knowledge