Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seo-Jin Ko is active.

Publication


Featured researches published by Seo-Jin Ko.


Energy and Environmental Science | 2014

Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ∼300 nm thick conventional single-cell device

Thanh Luan Nguyen; Hyun-Jung Choi; Seo-Jin Ko; Mohammad Afsar Uddin; Bright Walker; Seungjib Yum; Ji-Eun Jeong; Myoung Hee Yun; Tae Joo Shin; Sungu Hwang; Jin Young Kim; Han Young Woo

We report a series of semi-crystalline, low band gap (LBG) polymers and demonstrate the fabrication of highly efficient polymer solar cells (PSCs) in a thick single-cell architecture. The devices achieve a power conversion efficiency (PCE) of over 7% without any post-treatment (annealing, solvent additive, etc.) and outstanding long-term thermal stability for 200 h at 130 °C. These excellent characteristics are closely related to the molecular structures where intra- and/or intermolecular noncovalent hydrogen bonds and dipole–dipole interactions assure strong interchain interactions without losing solution processability. The semi-crystalline polymers form a well-distributed nano-fibrillar networked morphology with PC70BM with balanced hole and electron mobilities (a h/e mobility ratio of 1–2) and tight interchain packing (a π–π stacking distance of 3.57–3.59 A) in the blend films. Furthermore, the device optimization with a processing additive and methanol treatment improves efficiencies up to 9.39% in a ∼300 nm thick conventional single-cell device structure. The thick active layer in the PPDT2FBT:PC70BM device attenuates incident light almost completely without damage in the fill factor (0.71–0.73), showing a high short-circuit current density of 15.7–16.3 mA cm−2. Notably, PPDT2FBT showed negligible changes in the carrier mobility even at ∼1 μm film thickness.


Advanced Materials | 2015

Small‐Bandgap Polymer Solar Cells with Unprecedented Short‐Circuit Current Density and High Fill Factor

Hyosung Choi; Seo-Jin Ko; Taehyo Kim; Pierre-Olivier Morin; Bright Walker; Byoung Hoon Lee; Mario Leclerc; Jin Young Kim; Alan J. Heeger

Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive.


Nano Letters | 2013

Multipositional Silica-Coated Silver Nanoparticles for High-Performance Polymer Solar Cells

Hyosung Choi; Jung-Pil Lee; Seo-Jin Ko; Jae-Woo Jung; Hyungmin Park; Seung Min Yoo; Okji Park; Jong-Ryul Jeong; Soo-Jin Park; Jin Young Kim

We demonstrate high-performance polymer solar cells using the plasmonic effect of multipositional silica-coated silver nanoparticles. The location of the nanoparticles is critical for increasing light absorption and scattering via enhanced electric field distribution. The device incorporating nanoparticles between the hole transport layer and the active layer achieves a power conversion efficiency of 8.92% with an external quantum efficiency of 81.5%. These device efficiencies are the highest values reported to date for plasmonic polymer solar cells using metal nanoparticles.


Advanced Materials | 2014

Amine-Based Polar Solvent Treatment for Highly Efficient Inverted Polymer Solar Cells

Bo Ram Lee; Eui Dae Jung; Yun Seok Nam; Minbok Jung; Ji Sun Park; Seungjin Lee; Hyosung Choi; Seo-Jin Ko; Na Ra Shin; Young-Kuk Kim; Sang Ouk Kim; Jin Young Kim; Hyung-Joon Shin; Shinuk Cho; Myoung Hoon Song

The interfacial dipolar polarization in inverted structure polymer solar cells, which arises spontaneously from the absorption of ethanolamine end groups, such as amine and hydroxyl groups on ripple-structure zinc oxide (ZnO-R), lowers the contact barrier for electron transport and extraction and leads to enhanced electron mobility, suppression of bimolecular recombination, reduction of the contact resistance and series resistance, and remarkable enhancement of the power conversion efficiency.


ACS Nano | 2012

Highly efficient polymer light-emitting diodes using graphene oxide as a hole transport layer.

Bo Ram Lee; Jung-Woo Kim; Dongwoo Kang; Dong Wook Lee; Seo-Jin Ko; Hyun Jung Lee; Chang-Lyoul Lee; Jin Young Kim; Hyeon Suk Shin; Myoung Hoon Song

We present an investigation of polymer light-emitting diodes (PLEDs) with a solution-processable graphene oxide (GO) interlayer. The GO layer with a wide band gap blocks electron transport from an emissive polymer to an ITO anode while reducing the exciton quenching between the GO and the active layer in place of poly(styrenesulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS). This GO interlayer maximizes hole-electron recombinations within the emissive layer, finally enhancing device performance and efficiency levels in PLEDs. It was found that the thickness of the GO layer is an important factor in device performance. PLEDs with a 4.3 nm thick GO interlayer are superior to both those with PEDOT:PSS layers as well as those with rGO, showing maximum luminance of 39 000 Cd/m(2), maximum luminous efficiencies of 19.1 Cd/A (at 6.8 V), and maximum power efficiency as high as 11.0 lm/W (at 4.4 V). This indicates that PLEDs with a GO layer show a 220% increase in their luminous efficiency and 280% increase in their power conversion efficiency compared to PLEDs with PEDOT:PSS.


Nano Letters | 2015

Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices

Saewon Kang; Taehyo Kim; Seungse Cho; Youngoh Lee; Ayoung Choe; Bright Walker; Seo-Jin Ko; Jin Young Kim; Hyunhyub Ko

Percolation networks of silver nanowires (AgNWs) are commonly used as transparent conductive electrodes (TCEs) for a variety of optoelectronic applications, but there have been no attempts to precisely control the percolation networks of AgNWs that critically affect the performances of TCEs. Here, we introduce a capillary printing technique to precisely control the NW alignment and the percolation behavior of AgNW networks. Notably, partially aligned AgNW networks exhibit a greatly lower percolation threshold, which leads to the substantial improvement of optical transmittance (96.7%) at a similar sheet resistance (19.5 Ω sq(-1)) as compared to random AgNW networks (92.9%, 20 Ω sq(-1)). Polymer light-emitting diodes (PLEDs) using aligned AgNW electrodes show a 30% enhanced maximum luminance (33068 cd m(-2)) compared to that with random AgNWs and a high luminance efficiency (14.25 cd A(-1)), which is the highest value reported so far using indium-free transparent electrodes for fluorescent PLEDs. In addition, polymer solar cells (PSCs) using aligned AgNW electrodes exhibit a power conversion efficiency (PCE) of 8.57%, the highest value ever reported to date for PSCs using AgNW electrodes.


Advanced Materials | 2015

An Organic Surface Modifier to Produce a High Work Function Transparent Electrode for High Performance Polymer Solar Cells

Hyosung Choi; Hak-Beom Kim; Seo-Jin Ko; Jin Young Kim; Alan J. Heeger

Modification of an ITO electrode with small-molecule organic surface modifier, 4-chloro-benzoic acid (CBA), via a simple spin-coating method produces a high-work-function electrode with high transparency and a hydrophobic surface. As an alternative to PEDOT:PSS, CBA modification achieves efficiency enhancement up to 8.5%, which is attributed to enhanced light absorption within the active layer and smooth hole transport from the active layer to the anode.


ACS Applied Materials & Interfaces | 2014

Synthesis of PCDTBT-based fluorinated polymers for high open-circuit voltage in organic photovoltaics: towards an understanding of relationships between polymer energy levels engineering and ideal morphology control.

Jonggi Kim; Myoung Hee Yun; Gi-Hwan Kim; Jungho Lee; Sang Myeon Lee; Seo-Jin Ko; Yiho Kim; Gitish K. Dutta; Mijin Moon; Song Yi Park; Dong Suk Kim; Jin Young Kim; Changduk Yang

The introduction of fluorine (F) atoms onto conjugated polymer backbone has verified to be an effective way to enhance the overall performance of polymer-based bulk-heterojunction (BHJ) solar cells, but the underlying working principles are not yet fully uncovered. As our attempt to further understand the impact of F, herein we have reported two novel fluorinated analogues of PCDTBT, namely, PCDTFBT (1F) and PCDT2FBT (2F), through inclusion of either one or two F atoms into the benzothiadiazole (BT) unit of the polymer backbone and the characterization of their physical properties, especially their performance in solar cells. Together with a profound effect of fluorination on the optical property, nature of charge transport, and molecular organization, F atoms are effective in lowering both the HOMO and LUMO levels of the polymers without a large change in the energy bandgaps. PCDTFBT-based BHJ solar cell shows a power conversion efficiency (PCE) of 3.96 % with high open-circuit voltage (VOC) of 0.95 V, mainly due to the deep HOMO level (-5.54 eV). To the best of our knowledge, the resulting VOC is comparable to the record VOC values in single junction devices. Furthermore, to our delight, the best PCDTFBT-based device, prepared using 2 % v/v diphenyl ether (DPE) additive, reaches the PCE of 4.29 %. On the other hand, doubly-fluorinated polymer PCDT2FBT shows the only moderate PCE of 2.07 % with a decrease in VOC (0.88 V), in spite of the further lowering of the HOMO level (-5.67 eV) with raising the number of F atoms. Thus, our results highlight that an improvement in efficiency by tuning the energy levels of the polymers by means of molecular design can be expected only if their truly optimized morphologies with fullerene in BHJ systems are materialized.


Scientific Reports | 2013

Redox-active charge carriers of conducting polymers as a tuner of conductivity and its potential window

Han-Saem Park; Seo-Jin Ko; Jeong-Seok Park; Jin Young Kim; Hyun-Kon Song

Electric conductivity of conducting polymers has been steadily enhanced towards a level worthy of being called its alias, “synthetic metal”. PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate)), as a representative conducting polymer, recently reached around 3,000 S cm−1, the value to open the possibility to replace transparent conductive oxides. The leading strategy to drive the conductivity increase is solvent annealing in which aqueous solution of PEDOT:PSS is treated with an assistant solvent such as DMSO (dimethyl sulfoxide). In addition to the conductivity enhancement, we found that the potential range in which PEDOT:PSS is conductive is tuned wider into a negative potential direction by the DMSO-annealing. Also, the increase in a redox-active fraction of charge carriers is proposed to be responsible for the enhancement of conductivity in the solvent annealing process.


Energy and Environmental Science | 2013

Highly efficient plasmonic organic optoelectronic devices based on a conducting polymer electrode incorporated with silver nanoparticles

Seo-Jin Ko; Hyosung Choi; Won Ho Lee; Taehyo Kim; Bo Ram Lee; Jae-Woo Jung; Jong-Ryul Jeong; Myoung Hoon Song; Jeong Chul Lee; Han Young Woo; Jin Young Kim

Highly efficient ITO-free polymeric electronic devices were successfully demonstrated by replacement of the ITO electrode with a solution-processed PEDOT:PSS electrode containing Ag nanoparticles (NPs). Polymer solar cells (PSCs) and light emitting diodes (PLEDs) were fabricated based on poly(5,6-bis(octyloxy)-4-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole) (PTBT):PC61BM and Super Yellow as a photoactive layer, respectively. The surface plasmon resonance (SPR) effect and improved electrical conductivity by the Ag NPs clearly contributed to increments in light absorption/emission in the active layer as well as the conductivity of the PEDOT:PSS electrode in PSCs and PLEDs. The ITO-free bulk heterojunction PSCs showed a 1% absolute enhancement in the power conversion efficiency (3.27 to 4.31%), and the power efficiency of the PLEDs was improved by 124% (3.75 to 8.4 lm W−1) compared to the reference devices without Ag NPs. The solution-processable conducting polymer, PEDOT:PSS with Ag NPs, can be a promising electrode for large area and flexible optoelectronic devices with a low-cost fabrication process.

Collaboration


Dive into the Seo-Jin Ko's collaboration.

Top Co-Authors

Avatar

Jin Young Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Taehyo Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bright Walker

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Song Yi Park

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sungu Hwang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Gi-Hwan Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge