Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seok-Jo Yang is active.

Publication


Featured researches published by Seok-Jo Yang.


Scientific Reports | 2013

Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases

Pil-Ryung Cha; Hyung-Seop Han; Gui-Fu Yang; Yu-Chan Kim; Ki-Ha Hong; Seung-Cheol Lee; Jae-Young Jung; Jae-Pyeong Ahn; Young-Yul Kim; Sung-Youn Cho; Ji Young Byun; Kang-Sik Lee; Seok-Jo Yang; Hyun-Kwang Seok

Crystalline Mg-based alloys with a distinct reduction in hydrogen evolution were prepared through both electrochemical and microstructural engineering of the constituent phases. The addition of Zn to Mg-Ca alloy modified the corrosion potentials of two constituent phases (Mg + Mg2Ca), which prevented the formation of a galvanic circuit and achieved a comparable corrosion rate to high purity Mg. Furthermore, effective grain refinement induced by the extrusion allowed the achievement of much lower corrosion rate than high purity Mg. Animal studies confirmed the large reduction in hydrogen evolution and revealed good tissue compatibility with increased bone deposition around the newly developed Mg alloy implants. Thus, high strength Mg-Ca-Zn alloys with medically acceptable corrosion rate were developed and showed great potential for use in a new generation of biodegradable implants.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy

Jee-Wook Lee; Hyung-Seop Han; Kyeong-Jin Han; Jimin Park; Hojeong Jeon; Myoung-Ryul Ok; Hyun-Kwang Seok; Jae-Pyoung Ahn; Kyung Eun Lee; Dong-Ho Lee; Seok-Jo Yang; Sung-Youn Cho; Pil-Ryung Cha; Hoon Kwon; Tae-Hyun Nam; Jee Hye Lo Han; Hyoung-Jin Rho; Kang-Sik Lee; Yu-Chan Kim; Diego Mantovani

Significance In the past decade, countless studies have been performed to control the mechanical and corrosion property of magnesium-based alloy, which degrades in the physiological environment, to overcome the flaws of the inert implant materials and shift the paradigm of conventional bone fixation devices. Controlled degradation of Mg-5wt%Ca-1wt%Zn alloy results in the formation of biomimicking calcification matrix at the degrading interface to initiate the bone formation process. This process facilitates early bone healing and allows the complete replacement of biodegradable Mg implant by the new bone within 1 y of implantation, as demonstrated in 53 cases of successful long-term clinical study. There has been a tremendous amount of research in the past decade to optimize the mechanical properties and degradation behavior of the biodegradable Mg alloy for orthopedic implant. Despite the feasibility of degrading implant, the lack of fundamental understanding about biocompatibility and underlying bone formation mechanism is currently limiting the use in clinical applications. Herein, we report the result of long-term clinical study and systematic investigation of bone formation mechanism of the biodegradable Mg-5wt%Ca-1wt%Zn alloy implant through simultaneous observation of changes in element composition and crystallinity within degrading interface at hierarchical levels. Controlled degradation of Mg-5wt%Ca-1wt%Zn alloy results in the formation of biomimicking calcification matrix at the degrading interface to initiate the bone formation process. This process facilitates early bone healing and allows the complete replacement of biodegradable Mg implant by the new bone within 1 y of implantation, as demonstrated in 53 cases of successful long-term clinical study.


Medical Engineering & Physics | 2011

Spinal muscles can create compressive follower loads in the lumbar spine in a neutral standing posture

Kap-Soo Han; A. Rohlmann; Seok-Jo Yang; Byeong Sam Kim; Tae-Hong Lim

The ligamentous spinal column buckles under compressive loads of even less than 100N. Experimental results showed that under the follower load constraint, the ligamentous lumbar spine can sustain large compressive loads without buckling, while at the same time maintaining its flexibility reasonably well. The purpose of this study was to investigate the feasibility of follower loads produced by spinal muscles in the lumbar spine in a quiet standing posture. A three-dimensional static model of the lumbar spine incorporating 232 back muscles was developed and utilized to perform the optimization analysis in order to find the muscle forces, and compressive follower loads (CFLs) along optimum follower load paths (FLPs). The effect of increasing external loads on CFLs was also investigated. An optimum solution was found which is feasible for muscle forces producing minimum CFLs along the FLP located 11 mm posterior to the curve connecting the geometrical centers of the vertebral bodies. Activation of 30 muscles was found to create CFLs with zero joint moments in all intervertebral joints. CFLs increased with increasing external loads including FLP deviations from the optimum location. Our results demonstrate that spinal muscles can create CFLs in the lumbar spine in a neutral standing posture in vivo to sustain stability. Therefore, its application in experimental and numerical studies concerning loading conditions seems to be suitable for the attainment of realistic results.


Vehicle System Dynamics | 2015

Coupled vibration analysis of Maglev vehicle-guideway while standing still or moving at low speeds

Ki-Jung Kim; Jong-Boo Han; Hyung-Suk Han; Seok-Jo Yang

Dynamic instability, that is, resonance, may occur on an electromagnetic suspension-type Maglev that runs over the elevated guideway, particularly at very low speeds, due to the flexibility of the guideway. An analysis of the dynamic interaction between the vehicle and guideway is required at the design stage to investigate such instability, setting slender guideway in design direction for reducing construction costs. In addition, it is essential to design an effective control algorithm to solve the problem of instability. In this article, a more detailed model for the dynamic interaction of vehicle/guideway is proposed. The proposed model incorporates a 3D full vehicle model based on virtual prototyping, flexible guideway by a modal superposition method and levitation electromagnets including feedback controller into an integrated model. By applying the proposed model to an urban Maglev vehicle newly developed for commercial application, an analysis of the instability phenomenon and an investigation of air gap control performance are carried out through a simulation.


Journal of The Mechanical Behavior of Biomedical Materials | 2013

The modification of microstructure to improve the biodegradation and mechanical properties of a biodegradable Mg alloy.

Hyung-Seop Han; Yin Minghui; Hyun-Kwang Seok; Ji-Young Byun; Pil-Ryung Cha; Seok-Jo Yang; Yu-Chan Kim

The effect of microstructural modification on the degradation behavior and mechanical properties of Mg-5wt%Ca alloy was investigated to tailor the load bearing orthopedic biodegradable implant material. The eutectic Mg/Mg2Ca phase precipitated in the as-cast Mg-5wt%Ca alloy generated a well-connected network of Mg2Ca, which caused drastic corrosion due to a micro galvanic cell formed by its low corrosion potential. Breaking the network structure using an extrusion process remarkably retarded the degradation rate of the extruded Mg-5wt%Ca alloy, which demonstrates that the biocompatibility and mechanical properties of Mg alloys can be enhanced through modification of their microstructure. The results from the in vitro and in vivo study suggest that the tailored microstructure by extrusion impede the deterioration in strength that arises due to the dynamic degradation behavior in body solution.


Journal of Electrical Engineering & Technology | 2013

Dynamic Analysis of a Maglev Conveyor Using an EM-PM Hybrid Magnet

Ki-Jung Kim; Hyung-Suk Han; Chang-Hyun Kim; Seok-Jo Yang

With the emergence of high-integration array and large area panel process, the need to minimize the generation of particles in the field of semiconductor, LCD and OLED has grown. As an alternative to the conventional roller system, a contactless magnetic conveyor has been proposed to reduce the generation of particles. An EM-PM hybrid which is one of magnetic levitation types is already proposed for the conveyor system. One of problems pointed out with this approach is the vibration caused by the dynamic interaction between conveyor and rail. To reduce the vibration, the introduction of a secondary suspension system which aims to decouple the levitation electromagnet from the main body is proposed. The objective of this study is to develop a dynamic model for the magnetically levitated conveyor, and to investigate the effect of the introduced suspension system. An integrated model of levitation system and rail based on 3D multibody dynamic model is proposed. With the proposed model, the dynamic characteristics of maglev conveyor system are analyzed, and the effect of the secondary suspension and the stiffness and damping are investigated.


Transactions of The Korean Society of Mechanical Engineers A | 2013

Analysis of Dynamic Interaction Between Maglev Vehicle and Guideway

Ki-Jung Kim; Hyung-Suk Han; Seok-Jo Yang

This study aims to investigate the dynamic interaction characteristics between Maglev vehicles and an elevated guideway. A more detailed model for the dynamic interaction of the vehicle/guideway is proposed. The proposed model incorporates a 3D full vehicle model based on prototyping, flexible guideway by a modal superposition method, and levitation electromagnets including the feedback controller into an integrated model. The proposed model was applied to an urban transit Maglev developed for a commercial application to analyze the dynamic response of the vehicle and guideway, and the effect of the surface roughness of the rail, mid-span guideway deflections, and air gap variations are then investigated from the numerical simulation.


Journal of Biomedical Materials Research Part B | 2012

In vivo corrosion mechanism by elemental interdiffusion of biodegradable Mg–Ca alloy†

Jae-Young Jung; Sang-Jun Kwon; Hyung-Seop Han; Ji-Young Lee; Jae-Pyoung Ahn; Seok-Jo Yang; Sung-Youn Cho; Pil-Ryung Cha; Yu-Chan Kim; Hyun-Kwang Seok

We elucidated the in vivo corrosion mechanism of the biodegradable alloy Mg-10 wt % Ca in rat femoral condyle through transmission electron microscope observations assisted by focused ion beam technique. The alloy consists of a primary Mg phase and a three-dimensional lamellar network of Mg and Mg(2)Ca. We found that the Mg(2)Ca is rapidly corroded by interdiffusion of Ca and O, leading to a structural change from lamellar network to nanocrystalline MgO. In contrast to the fast corrosion rate of the lamellar structure, the primary Mg phase slowly changes into nanocrystalline MgO through surface corrosion by O supplied along the lamellar networks. The rapid interdiffusion induces an inhomogeneous Ca distribution and interestingly leads to the formation of a transient CaO phase, which acts as a selective leaching path for Ca. In addition, the outgoing Ca with P from body fluids forms needle-type calcium phosphates similar to hydroxyl apatite at interior and surface of the implant, providing an active biological environment for bone mineralization.


Metals and Materials International | 2012

Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model

Hyung-Seop Han; Young-Yul Kim; Yu-Chan Kim; Sung-Youn Cho; Pil-Ryung Cha; Hyun-Kwang Seok; Seok-Jo Yang

The purposes of this preliminary study were to investigate the effect of increased Ca contents (5–10 wt% Ca) in Mg-Ca alloy on the mechanical properties and osseous healing rate in a standard rat defect model. Mechanical tests were performed using a compression system followed by qualitative histological analysis using the hemotoxylin and eosin (H&E) staining method and quantitative reverse transcriptase polymerase chain reaction (reverse transcriptase PCR). Mg-Ca alloy degraded fast in vivo while displaying a high level of the bone formation markersOC and ALP. Favorablemechanical strength properties were displayed as Ca content increased from 5 wt% to 10 wt% to show its potential to be considered as a load bearing implant material. The resultfrom this study suggests that the developed Mg-Ca alloy has the potential to serve as a biocompatible load bearing implant material that is degradable and possibly osteoconductive.


Metals and Materials International | 2013

Effect of surface area on corrosion properties of magnesium for biomaterials

Woo-Cheol Kim; Kwon-Hoon Han; Jung-Gu Kim; Seok-Jo Yang; Hyun-Kwang Seok; Hyung-Seop Han; Young-Yul Kim

This study examined the effect of the surface area on the corrosion properties of magnesium through in vivo (weight loss test) and in vitro (electrochemical and weight loss tests in Hank’s solution) tests. The corrosion rate was reduced as the surface area increased. Surface analysis showed that the precipitation of calcium phosphate increased with increasing surface area. Moreover, the pH level around the specimen increased with increasing surface area. This increase of pH can accelerate the precipitation of calcium phosphate on the surface. However, different mechanism of calcium phosphate precipitation was found for in vivo and vitro test environment. In vitro environment showed an increase of calcium phosphate due to the continuous increase in pH, whereas in vivo environment showed increase of calcium phosphate to maintain homeostasis and reduced the level of pH in physiological system. Consequently, the increase in magnesium surface area leads to increase the precipitation of calcium phosphate as a more stable rust layer which ultimately increases the corrosion resistance of magnesium.

Collaboration


Dive into the Seok-Jo Yang's collaboration.

Top Co-Authors

Avatar

Hyun-Kwang Seok

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yu-Chan Kim

Korea University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ki-Jung Kim

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyung-Seop Han

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jung-Gu Kim

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young-Yul Kim

Catholic University of Korea

View shared research outputs
Top Co-Authors

Avatar

Hyung-Suk Han

Hankuk University of Foreign Studies

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge