Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Seokhwan Lee.
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering | 2014
Seokhwan Lee; Tae Young Kim; Kern-Yong Kang
The vast storage of biomass available worldwide has the potential to displace the significant amounts of fuel that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of the possible paths by which we can convert biomass to higher-value products. Wood pyrolysis oil has been regarded as an alternative fuel to petroleum fuels for use in diesel engines. However, the use of wood pyrolysis oil in diesel engines requires modifications to those engines owing to the low energy density, the high water content, the high acidity and the high viscosity of wood pyrolysis oil. The easiest ways to adopt wood pyrolysis in a diesel engine without engine modifications are blending or emulsification of the wood pyrolysis oil with diesel or biodiesel. Wood pyrolysis oil is immiscible with diesel and biodiesel; hence appropriate surfactants or co-solvents are needed for emulsification or blending. In this study, a diesel engine operated with diesel, biodiesel, wood pyrolysis oil–diesel emulsion and wood pyrolysis oil–biodiesel emulsion was investigated experimentally. The combustion performance and the gaseous and particle emission characteristics of a diesel engine fuelled by diesel, biodiesel and wood pyrolysis oil emulsions were examined. The results showed that stable engine operation was possible with the emulsions and that the engine output power was comparable with those of diesel and biodiesel operation. However, in the case of wood pyrolysis oil–diesel emulsion operation, the total hydrocarbon and carbon monoxide emissions were increased owing to the increased ignition delay and poor spray atomization, and the nitogen oxide and the soot emissions were decreased owing to the high water content and the high oxygen content in the fuel. Long-term validation of adopting wood pyrolysis oil in diesel engines is still needed because the oil is acidic, with the consequent problems of corrosion and clogging, especially in the injection system.
Transactions of the Korean Society of Automotive Engineers | 2012
Seokhwan Lee; Jun-Hyuk Park; Young Choi; Se-Jong Woo; Kern-Yong Kang
The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is emulsification of BCO with diesel and bio diesel. In this study, a diesel engine operated with diesel, bio diesel (BD), BCO/diesel, BCO/bio diesel emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by BCO emulsions were examined. Results showed that stable engine operation was possible with emulsions and engine output power was comparable to diesel and bio diesel operation. However, in case of BCO/diesel emulsion operation, THC & CO emissions were increased due to the increased ignition delay and poor spray atomization and NOx & Soot were decreased due to the water and oxygen in the fuel. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion and clogging especially in the injection system.
Journal of Korean Society for Atmospheric Environment | 2012
Seokhwan Lee; Hong-Suk Kim; Jun-Hyuk Park; Gyu-Baek Cho
A large fraction of urban concentrations is due to non-exhaust traffic emissions including road dust, tire wear particles, and brake lining particles. Although potential health and environmental impacts associated with tire wear debris have increased, few environmentally and biologically relevant studies of actual tire wear debris have been conducted. Tire wear particles (TWP) are released from the tire tread as a result of the interaction between the tire and the pavement. Roadway particles (RP), meanwhile, are particles on roads composed of a mixture of elements from tires, pavements, fuels, brakes, and environmental dust. The main objective of present study is to identify the contribution of tires to the generation of RP and to assess the potential environmental and health impacts of this contribution. First, a mobile measurement system was constructed and used to measure the RP on asphalt roads according to vehicle speed. The equipment of the mobile system provides concentrations by Dusttrak DRX and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and an aerosol particle sizer (APS). When traveling on an asphalt road at constant speed, there is a clear tendency for concentration to increase slightly in accordance with an increase in the vehicle speed. It was also found that considerable brake wear particles and particles from tire/road interface were generated by rapid deceleration of the vehicle. As a result, the concentration and particle number of ultra-fine particles were measured to be very high.
Journal of Korean Society for Atmospheric Environment | 2013
Jihyun Kwak; Sunyoup Lee; Seokhwan Lee
The non-exhaust coarse, fine, and ultrafine particles were characterized by on-road driving measurements using a mobile sampling system. The on-road driving measurements under constant speed driving revealed that mass concentrations of roadway particles (RWPs) were distributed mainly in a size range of 2~3 and slightly increased with increasing vehicle speed. Under braking conditions, the mode diameters of the particles were generally similar with those obtained under constant speed conditions. However, the PM concentrations emitted during braking condition were significantly higher than those produced under normal driving conditions. Higher number concentrations of ultrafine particles smaller than 70 nm were observed during braking conditions, and the number concentration of particles sampled 90 mm above the pavement was 6 times higher than that obtained 40 mm above the pavement. Under cornering conditions, the number concentrations of RWPs sampled 40 mm above the pavement surface were higher than those sampled 90 mm above the pavement. This might be explained that a nucleation burst of a lot of vapor evaporated from the interaction between the tire and the road pavement under braking conditions continuously occurred by cooling during the transport to the sampling height 90 mm, while, for the case of cornering situations, the ultrafine particle formation was completed before the transport to the sampling height of 40 mm.
Transactions of the Korean Society of Automotive Engineers | 2012
Seokhwan Lee; Hong-Seok Kim; Jun-Hyuk Park; Gyu-Baek Cho
To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, CO2 and THC (Total hydrocarbon), and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the experiment in which a MEL chases a city bus fuelled by diesel, DME and Bio-diesel. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the bus fuelled by diesel were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. However, most particles in the exhaust of the bus fuelled by DME were nano-particles (diameter: less than 50 nm). The bus fuelled by Bio-diesel shows less particle emissions compare to diesel bus due to the presence of the oxygen in the fuel.
ASME 2011 Internal Combustion Engine Division Fall Technical Conference | 2011
Hoin Kang; Jerald A. Caton; Seang-Wock Lee; Seokhwan Lee; Seungmook Oh
LPG (Liquefied Petroleum Gas) has been widely used as an alternative fuel for gasoline and diesel vehicles in light of clean fuel and diversity of energy resources. But conventional LPG vehicles using carburetors or MPI fuel injection systems can’t satisfy the emissions regulations and CO2 targets of the future. Therefore, it is essential to develop LPG engines of spark ignition or compression ignition type such that LPG fuel is directly injected into the combustion chamber under high pressure. A compression ignition engine using LPG is the ideal engine with many advantages of fuel economy, heat efficiency and low CO2 , even though it is difficult to develop due to the unique properties of LPG. This paper reports on numerical and experimental studies related to LPG fuel for a compression ignition engine. The numerical analysis is conducted to study the combustion chamber shape with CATIA and to analyze the spray and fluid behaviors with FLUENT for diesel and LPG (n-butane 100%) fuels. In one experimental study, a constant volume chamber is used to observe the spray formation for the chamber pressure 0 to 3MPa and to analyze the flame process, P-V diagram, heat release rate and emissions through the combustion of LPG fuel with the cetane additive DTBP (Di-tert-butyl peroxide) 5 to 15 wt% at 25MPa of fuel injection pressure. In engine bench tests, experiments were performed to find the optimum injection timing, lambda, COV and emissions for the LPG fuel with the cetane additive DTBP 5 to 15 wt% at 25MPa fuel injection pressure and 1500 rpm. The penetration distance of LPG (n-butane 100%) was shorter than that of diesel fuel and LPG was sensitive to the chamber pressure. The ignition delay was in inverse proportion to the ambient pressure linearly. In the engine bench tests, the optimum injection timing of the test engine to the LPG fuel with DTBP 15 wt% was about BTDC 12° CA at all loads and 1500 rpm. An increasing of DTBP blending ratio caused the promotion of flame and fast burn and this lead to reduce HC and CO emissions, on the other hand, to increase NOx and CO2 emissions.Copyright
Transactions of the Korean Society of Automotive Engineers | 2014
Seokhwan Lee; Youngun Jang; Hoseung Kim; Taeyoung Kim; Kern-Yong Kang; Jonghan Lim
The vast stores of biomass available in the worldwide have the potential to displace significant amounts of petroleum fuels. Fast pyrolysis of biomass is one of several paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO) has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, high acidity, high viscosity, and low cetane number of the WPO. One possible method by which the shortcomings may be circumvented is to co-fire WPO with other petroleum fuels. WPO has poor miscibility with light petroleum fuel oils; the most suitable candidates fuels for direct fuel mixing are methanol or ethanol. Early mixing with methanol or ethanol has the added benefit of significantly improving the storage and handling properties of the WPO. For separate injection co-firing, a WPO-ethanol blended fuel can be fired through diesel pilot injection in a dual-injection dieel engine. In this study, the performance and emission characteristics of a dual-injection diesel engine fuelled with diesel (pilot injection) and WPO-ethanol blend (main injection) were experimentally investigated. Results showed that although stable engine operation was possible with separate injection co-firing, the fuel conversion efficiency was slightly decreased due to high water contents of WPO compare to diesel combustion.
Transactions of the Korean Society of Automotive Engineers | 2014
Hoseung Kim; Youngun Jang; Seokhwan Lee; Taeyoung Kim; Kern-Yong Kang; Jun-Kyu Yoon
Abstract : Pyrolysis oil (PO), derived from biomass through fast pyrolysis process have the potential to displace significant amounts of petroleum fuels. The PO derived from wood has been regarded as an alternative fuel to be used in diesel engines. However, the use of PO in a diesel engine is very limited due to its poor properties like low energy density, low cetane number, high acidity and high viscosity of PO. Therefore, one of the easiest way to adopt PO to diesel engine without modifications is blended with other fuels that have high centane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel or biodiesel. Thus, to stabilize a homogeneous phase of diesel/biodiesel-PO blends, a proper surfactant should be used. Nevertheless, PO which was produced from different biomass type have varied characteristics and this complicates the selection of a suitable additive for a specific PO-diesel emulsion. In this regard, a more simple approach such as the use of a co-solvent like ethanol or butanol to induce a more stable phase of the PO-diesel mixture could be a promising alternative. In this study, a diesel engine operated with diesel/biodiesel-PO-butanol blends was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine were examined under the engine loads of IMEP 0.2 ~ 0.8MPa.
Journal of ILASS-Korea | 2014
Seokhwan Lee; Hoseung Kim; Taeyoung Kim; Se-Jong Woo; Kern-Yong Kang
Pyrolysis oil (PO), also known as Bio crude oil (BCO), has the potential to displace significant amounts of fuels that are currently derived from petroleum sources. PO has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of PO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the PO. One of the easiest way to adopt PO to diesel engine without modifications is emulsification of PO with the fuels that has higher cetane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel. Thus, to stabilize a homogeneous phase of diesel-PO blends, a proper surfactant should be used. In this study, a DI diesel engine operated with diesel and diesel-PO emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by diesel-PO emulsions were examined. Results showed that stable engine operation was possible with the emulsions and engine output power was comparable to diesel operation.
Transactions of the Korean Society of Automotive Engineers | 2012
Seokhwan Lee; Hong-Seok Kim; Jun-Hyuk Park; Se-Jong Woo; Jihyun Kwak
A large fraction of urban concentrations is due to non-exhaust traffic emissions including road dust, tire wear particles, and brake lining particles. Although potential health and environmental impacts associated with tire wear debris have been increased, few environmentally and biologically relevant studies of actual tire wear debris have been conducted. Tire wear particles (TWP) are released from the tire tread as a result of the interaction between the tire and the pavement. Roadway particles (RP), meanwhile, are particles on roads composed of a mixture of elements from tires, pavements, fuels, brakes, and environmental dust. The main objective of present study is to identify the contribution of tires to the generation of RP and to assess the potential environmental and health impacts of this contribution. First, a mobile measurement system was constructed and used to measure the roadway particles on asphalt road according to vehicle speed. The equipment of the mobile system provides concentrations by Dusttrak DRX and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and an aerosol particle sizer (APS). When traveling on an asphalt road at constant speed, there is a clear tendency for PM10 concentration to increase slightly in accordance with an increase in the vehicle speed. It was also found that considerable brake wear particles and particles from tire/road interface were generated by rapid deceleration of the vehicle. The morphology and elements of the roadway particles were also analyzed using SEM-EDX technique.