Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seon Kyeong Park is active.

Publication


Featured researches published by Seon Kyeong Park.


Oxidative Medicine and Cellular Longevity | 2016

Reversal of Trimethyltin-Induced Learning and Memory Deficits by 3,5-Dicaffeoylquinic Acid

Jin Yong Kang; Seon Kyeong Park; Tian Jiao Guo; Jeong Su Ha; Du Sang Lee; Jong Min Kim; Uk Lee; Dae-Ok Kim; Ho Jin Heo

The antiamnesic effect of 3,5-dicaffeoylquinic acid (3,5-diCQA) as the main phenolic compound in Artemisia argyi H. extract on cognitive dysfunction induced by trimethyltin (TMT) (7.1 μg/kg of body weight; intraperitoneal injection) was investigated in order to assess its ameliorating function in mice. In several behavioral tests, namely, the Y-maze, passive avoidance, and Morris water maze (MWM) test, 3,5-diCQA significantly ameliorated learning and memory deficits. After the behavioral tests, brain tissues from the mice were analyzed to characterize the basis of the neuroprotective effect. Acetylcholine (ACh) levels increased, whereas the activity of acetylcholinesterase (AChE) decreased upon administration of 3,5-diCQA. In addition, 3,5-diCQA effectively protected against an increase in malondialdehyde (MDA) content, an increase in the oxidized glutathione (GSH) ratio, and a decline of total superoxide dismutase (SOD) level. 3,5-diCQA may prevent neuronal apoptosis through the protection of mitochondrial activities and the repression of apoptotic signaling molecules such as p-Akt, BAX, and p-tau (Ser 404).


Behavioural Brain Research | 2016

Anti-amnesic effect of Dendropanax morbifera via JNK signaling pathway on cognitive dysfunction in high-fat diet-induced diabetic mice

Jong Min Kim; Seon Kyeong Park; Tian Jiao Guo; Jin Yong Kang; Jeong Su Ha; Du Sang Lee; Uk Lee; Ho Jin Heo

The ameliorating effects of the ethyl acetate fraction from Dendropanax morbifera (EFDM) on cognitive impairment in high-fat diet (HFD)-induced diabetic mice were examined by measuring its possible pharmacological activities. Administration of EFDM (20 and 50mg/kg body weight) in HFD-induced diabetic mice significantly improved glucose tolerance status in the intraperitoneal glucose tolerance test (IPGTT). In animal experiments using Y-maze, passive avoidance and Morris water maze tests, the cognitive and behavioral disorders in HFD-induced diabetic mice were considerably recovered by regulating cholinergic systems, including acetylcholine (ACh) levels and acetylcholinesterase (AChE) inhibition, and antioxidant systems, including superoxide dismutase (SOD), glutathione (GSH), oxidized GSH, and malondialdehyde (MDA) levels. Furthermore, HFD-induced abnormal activity of mitochondria were also significantly protected by the improvement of the c-Jun N-terminal protein kinase (JNK) signaling pathway with phosphorylated JNK (p-JNK), phosphorylated insulin receptor substrate (p-IRS), serine/threonine protein kinase (Akt), phosphorylated Akt (p-Akt), and phosphorylated tau (p-tau). Finally, rutin, orientin, isoorientin, and luteolin-7-O-rutinoside as the main phenolics of EFDM were identified using ultra-performance liquid chromatography/quadrupole time of flight tandem mass spectrometry (UPLC-QTOF/MS(2)). These findings suggest that EFDM may have an effect as a multiple preventive substances to reduce diabetes-associated cognitive dysfunction.


BMC Complementary and Alternative Medicine | 2014

An investigation into the ameliorating effect of black soybean extract on learning and memory impairment with assessment of neuroprotective effects

Ji Hee Jeong; Hyeon Ju Kim; Seon Kyeong Park; Dong Eun Jin; O-Jun Kwon; Hyun-Jin Kim; Ho Jin Heo

BackgroundThe physiological effects of the non-anthocyanin fraction (NAF) in a black soybean seed coat extract on Aβ-induced oxidative stress were investigated to confirm neuroprotection. In addition, we examined the preventive effect of NAF on cognitive defects induced by the intracerebroventricular (ICV) injection of Aβ.MethodsLevels of cellular oxidative stress were measured using 2′,7′-dichlorofluorescein diacetate (DCF-DA). Neuronal cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. To investigate in vivo anti-amnesic effects of NAF by using Y-maze and passive avoidance tests, the learning and memory impairment in mice was induced by Aβ. After in vivo assays, acetylcholinesterase (AChE) activity and level of malondialdehyde (MDA) in the mouse brain were determined to confirm the cognitive effect. Individual phenolics of NAF were qualitatively analyzed by using an ultra-performance liquid chromatography (UPLC) Accurate-Mass Quadrupole Time of-Flight (Q-TOF) UPLC/MS.ResultsA NAF showed cell protective effects against oxidative stress-induced cytotoxicity. Intracellular ROS accumulated through Aβ1–40 treatment was significantly reduced in comparison to cells only treated with Aβ1–40. In MTT and LDH assay, the NAF also presented neuroprotective effects on Aβ1–40-treated cytotoxicity. Finally, the administration of this NAF in mice significantly reversed the Aβ1–40-induced cognitive defects in in vivo behavioral tests. After behavioral tests, the mice brains were collected in order to examine lipid peroxidation and AChE activity. AChE, preparation was inhibited by NAF in a dose-dependent manner. MDA generation in the brain homogenate of mice treated with the NAF was decreased. Q-TOF UPLC/MS analyses revealed three major phenolics from the non-anthocyanin fraction; epicatechin, procyanidin B1, and procyanidin B2.ConclusionsThe results suggest that the NAF in black soybean seed coat extracts may improve the cytotoxicity of Aβ in PC12 cells, possibly by reducing oxidative stress, and also have an anti-amnesic effect on the in vivo learning and memory deficits caused by Aβ. Q-TOF UPLC/MS analyses showed three major phenolics; (-)-epicatechin, procyanidin B1, and procyanidin B2. Above results suggest that (-)-epicatechins are the major components, and contributors to the anti-amnesic effect of the NAF from black soybean seed coat.


Journal of Agricultural and Food Chemistry | 2017

Ginsenoside Re Ameliorates Brain Insulin Resistance and Cognitive Dysfunction in High Fat Diet-Induced C57BL/6 Mice

Jong Min Kim; Chang Hyeon Park; Seon Kyeong Park; Tae Wan Seung; Jin Yong Kang; Jeong Su Ha; Du Sang Lee; Uk Lee; Dae-Ok Kim; Ho Jin Heo

The ameliorating effects of ginsenoside Re (G Re) on high fat diet (HFD)-induced insulin resistance in C57BL/6 mice were investigated to assess its physiological function. In the results of behavioral tests, G Re improved cognitive dysfunction in diabetic mice using Y-maze, passive avoidance, and Morris water maze tests. G Re also significantly recovered hyperglycemia and fasting blood glucose level. In the results of serum analysis, G Re decreased triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDLC), glutamic-oxaloacetic transaminase (GOT), and glutamic-pyruvic transaminase (GPT) and increased the ratio of high-density lipoprotein cholesterol (HDLC). G Re regulated acetylcholine (ACh), acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), and oxidized glutathione (GSH)/total GSH by regulating the c-Jun N-terminal protein kinase (JNK) pathway. These findings suggest that G Re could be used to improve HFD-induced insulin resistance condition by ameliorating hyperglycemia via protecting the cholinergic and antioxidant systems in the mouse brains.


Evidence-based Complementary and Alternative Medicine | 2015

Antiamnesic Effect of Actinidia arguta Extract Intake in a Mouse Model of TMT-Induced Learning and Memory Dysfunction

Jeong Su Ha; Dong Eun Jin; Seon Kyeong Park; Chang Hyeon Park; Tae Wan Seung; Dong-Won Bae; Dae-Ok Kim; Ho Jin Heo

The antiamnesic effects of ethyl acetate fraction from Actinidia arguta (EFAA) on trimethyltin- (TMT-) induced memory impairment were investigated to find the possibility of functional food substances. EFAA showed a potent AChE inhibitory effect (IC50 = 53 μg/mL) and efficient neuroprotection against H2O2-induced oxidative stress. The administration of EFAA significantly decreased TMT-induced cognitive deficit in Y-maze, passive avoidance, and Morris water maze (MWM) tests. After the behavioral tests, the antioxidant activities were confirmed using mice brain tissues. EFAA not only showed the inhibition of AChE activity and the decline of malondialdehyde (MDA) level as a sign of lipid peroxidation but also presented the increase of the superoxide dismutase (SOD) level and the decrease of the oxidized glutathione (GSSG)/total glutathione (GSH + GSSG) ratio. Finally, the phenolics in EFAA were identified using liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry, and four main phenolics, such as quinic acid, chlorogenic acid, caffeoyl hexose, and quercetin-3-glucoside, were identified. These results suggest that EFAA containing physiological phenolics might enhance drug-induced amnesia through AChE inhibition and neuroprotection.


Evidence-based Complementary and Alternative Medicine | 2015

Effect of Ginseng (Panax ginseng) Berry EtOAc Fraction on Cognitive Impairment in C57BL/6 Mice under High-Fat Diet Inducement

Chang Hyeon Park; Seon Kyeong Park; Tae Wan Seung; Dong Eun Jin; Tianjiao Guo; Ho Jin Heo

High-fat diet-induced obesity leads to type 2 diabetes. Recently, there has been growing apprehension about diabetes-associated cognitive impairment (DACM). The effect of ginseng (Panax ginseng) berry ethyl acetate fraction (GBEF) on mice with high-fat diet-induced cognitive impairment was investigated to confirm its physiological function. C57BL/6 mice were fed a high-fat diet for 5 weeks and then a high-fat diet with GBEF (20 and 50 mg/kg of body weight) for 4 weeks. After three in vivo behavioral tests (Y-maze, passive avoidance, and Morris water maze tests), blood samples were collected from the postcaval vein for biochemical analysis, and whole brains were prepared for an ex vivo test. A method based on ultra-performance liquid chromatography (UPLC) accurate-mass quadrupole time-of-flight mass spectrometry (Q-TOF/MS) was used to determine major ginsenosides. GBEF decreased the fasting blood glucose levels of high-fat diet-induced diabetes mellitus (DM) mice and improved hyperglycemia. Cognitive behavior tests were examined after setting up the DM mice. The in vivo experiments showed that mice treated with GBEF exhibited more improved cognitive behavior than DM mice. In addition, GBEF effectively inhibited the acetylcholinesterase (AChE) activity and malondialdehyde (MDA) levels of DM mice brain tissues. Q-TOF UPLC/MS analyses of GBEF showed that ginsenoside Re was the major ginsenoside.


Journal of Agricultural and Food Chemistry | 2016

Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment.

Seon Kyeong Park; Jeong Su Ha; Jong Min Kim; Jin Yong Kang; Du Sang Lee; Tian Jiao Guo; Uk Lee; Dae-Ok Kim; Ho Jin Heo

To examine the antiamnesic effects of broccoli (Brassica oleracea var. italica) leaves, we performed in vitro and in vivo tests on amyloid beta (Aβ)-induced neurotoxicity. The chloroform fraction from broccoli leaves (CBL) showed a remarkable neuronal cell-protective effect and an inhibition against acetylcholinesterase (AChE). The ameliorating effect of CBL on Aβ1-42-induced learning and memory impairment was evaluated by Y-maze, passive avoidance, and Morris water maze tests. The results indicated improving cognitive function in the CBL group. After the behavioral tests, antioxidant effects were detected by superoxide dismutase (SOD), oxidized glutathione (GSH)/total GSH, and malondialdehyde (MDA) assays, and inhibition against AChE was also presented in the brain. Finally, oxo-dihydroxy-octadecenoic acid (oxo-DHODE) and trihydroxy-octadecenoic acid (THODE) as main compounds were identified by quadrupole time-of-flight ultraperformance liquid chromatography (Q-TOF UPLC-MS) analysis. Therefore, our studies suggest that CBL could be used as a natural resource for ameliorating Aβ1-42-induced learning and memory impairment.


Journal of The Korean Society of Food Science and Nutrition | 2014

Nutritional Compositions of Three Traditional Actinidia (Actinidia arguta) Cultivars Improved in Korea

Dong Eun Jin; Seon Kyeong Park; Chang Hyeon Park; Tae Wan Seung; Ho Jin Heo

Nutritional compositions of Korean traditional actinidia (Actinidia arguta) cultivars, such as Otumsense, Chiak, and Skinny green, were investigated as high value-added food substances. Among minerals, K content of three cultivars was the highest, and P, Ca, and Na contents were relatively higher than those of other minerals.


Food Research International | 2018

Ethyl acetate fraction from Hibiscus sabdariffa L. attenuates diabetes-associated cognitive impairment in mice

Tae Wan Seung; Seon Kyeong Park; Jin Yong Kang; Jong Min Kim; Sang Hyun Park; Bong Seok Kwon; Chang Jun Lee; Jeong Eun Kang; Dae-Ok Kim; Uk Lee; Ho Jin Heo

The ameliorating effects of the ethyl acetate fraction from Hibiscus sabdariffa L. (EFHS)2 against diabetes mellitus (DM)3 and DM-induced cognitive impairment were investigated on streptozotocin (STZ)4-induced DM mice. The EFHS groups showed improved hyperglycemia and glucose tolerance compared to the STZ group. Furthermore, their liver and kidney function and lipid metabolic imbalance in the blood serum were effectively recovered. The EFHS groups significantly ameliorated STZ-induced cognitive impairment in Y-maze, passive avoidance, and Morris water maze (MWM)5 tests. The EFHS groups showed significant improvement in the antioxidant and cholinergic systems of the brain tissue. In addition, EFHS had an excellent ameliorating effect on protein expression levels from the tau hyperphosphorylation pathways, such as phospho-c-Jun N-terminal kinases (p-JNK),6 phospho-tau (p-tau),7 and cleaved poly (ADP-ribose) polymerase (c-PARP).8 The main compounds of EFHS were identified as various phenolic compounds, including hibiscus acid, caffeoylquinic acid (CQA)9 isomers, and quercetin derivates. Therefore, EFHS containing various physiologically active materials can potentially be used for improving DM-induced cognitive impairment via its antioxidant activity, improvement of the cholinergic system, and hyperphosphorylation tau signaling.


Korean Journal of Food Science and Technology | 2015

Anti-amnesic and Neuroprotective Effects of Artemisia argyi H. (Seomae mugwort) Extracts

Gi-Jeong Ha; Doo Sang Lee; Tae Wan Seung; Chang Hyeon Park; Seon Kyeong Park; Dong Eun Jin; Nak-Ku Kim; Hyun-Yul Shin; Ho Jin Heo

The anti-amnesic effect of Artemisia argyi H against trimethyltin (TMT)-induced learning and memory impairment and its neuroprotective effect against H2O2-inducedoxidative stress were investigated. Cognitive behavior was examined by Y-maze and passive avoidance test for 4 weeks, which showed improved cognitive functions in mice treated with the extract. In vitro neuroprotective effects against H2O2-induced oxidative stress were examined using 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromide and lactate dehydrogenase (LDH) assays. A. argyi H. extract showed protective effects against H2O2-induced neurotoxicity; moreover, LDH release into the medium was inhibited. Finally, high- performance liquid chromatography (HPLC) analysis showed that eupatilin and jaceosidin were the major phenolic compounds in A. argyi H. extract. These results suggest that A. argyi H. could be a good source of functional substances to prevent neurodegenerative diseases.

Collaboration


Dive into the Seon Kyeong Park's collaboration.

Top Co-Authors

Avatar

Ho Jin Heo

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Jong Min Kim

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Jin Yong Kang

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Jeong Su Ha

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Du Sang Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Tae Wan Seung

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Chang Hyeon Park

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Dong Eun Jin

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Uk Lee

Forest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge