Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seon-Won Kim is active.

Publication


Featured researches published by Seon-Won Kim.


Biotechnology and Bioengineering | 2001

Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production

Seon-Won Kim; Jay D. Keasling

Isopentenyl diphosphate (IPP) is the common, five-carbon building block in the biosynthesis of all carotenoids. IPP in Escherichia coli is synthesized through the nonmevalonate pathway, which has not been completely elucidated. The first reaction of IPP biosynthesis in E. coli is the formation of 1-deoxy-D-xylulose-5-phosphate (DXP), catalyzed by DXP synthase and encoded by dxs. The second reaction in the pathway is the reduction of DXP to 2-C-methyl-D-erythritol-4-phos- phate, catalyzed by DXP reductoisomerase and encoded by dxr. To determine if one or more of the reactions in the nonmevalonate pathway controlled flux to IPP, dxs and dxr were placed on several expression vectors under the control of three different promoters and transformed into three E. coli strains (DH5alpha, XL1-Blue, and JM101) that had been engineered to produce lycopene. Lycopene production was improved significantly in strains transformed with the dxs expression vectors. When the dxs gene was expressed from the arabinose-inducible araBAD promoter (P(BAD)) on a medium-copy plasmid, lycopene production was twofold higher than when dxs was expressed from the IPTG-inducible trc and lac promoters (P(trc) and P(lac), respectively) on medium-copy and high-copy plasmids. Given the low final densities of cells expressing dxs from IPTG-inducible promoters, the low lycopene production was probably due to the metabolic burden of plasmid maintenance and an excessive drain of central metabolic intermediates. At arabinose concentrations between 0 and 1.33 mM, cells expressing both dxs and dxr from P(BAD) on a medium-copy plasmid produced 1.4-2.0 times more lycopene than cells expressing dxs only. However, at higher arabinose concentrations lycopene production in cells expressing both dxs and dxr was lower than in cells expressing dxs only. A comparison of the three E. coli strains transformed with the arabinose-inducible dxs on a medium-copy plasmid revealed that lycopene production was highest in XL1-Blue.


Applied Microbiology and Biotechnology | 2007

An update on microbial carotenoid production: application of recent metabolic engineering tools

Amitabha Das; Sang-Hwal Yoon; Sook-Hee Lee; Jae-Yean Kim; Deok-Kun Oh; Seon-Won Kim

Carotenoids are ubiquitous pigments synthesized by plants, fungi, algae, and bacteria. Industrially, carotenoids are used in pharmaceuticals, neutraceuticals, and animal feed additives, as well as colorants in cosmetics and foods. Scientific interest in dietary carotenoids has increased in recent years because of their beneficial effects on human health, such as lowering the risk of cancer and enhancement of immune system function, which are attributed to their antioxidant potential. The availability of carotenoid genes from carotenogenic microbes has made possible the synthesis of carotenoids in non-carotenogenic microbes. The increasing interest in microbial sources of carotenoid is related to consumer preferences for natural additives and the potential cost effectiveness of creating carotenoids via microbial biotechnology. In this review, we will describe the recent progress made in metabolic engineering of non-carotenogenic microorganisms with particular focus on the potential of Escherichia coli for improved carotenoid productivity.


Journal of Biotechnology | 2009

Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli

Sang-Hwal Yoon; Sook-Hee Lee; Amitabha Das; Hee-Kyoung Ryu; Hee-Jeong Jang; Jae-Yean Kim; Deok-Kun Oh; Jay D. Keasling; Seon-Won Kim

The increased synthesis of building blocks of IPP (isopentenyl diphosphate) and DMAPP (dimethylallyl diphosphate) through metabolic engineering is a way to enhance the production of carotenoids. Using E. coli as a host, IPP and DMAPP supply can be increased significantly through the introduction of foreign MVA (mevalonate) pathway into it. The MVA pathway is split into two parts with the top and bottom portions supplying mevalonate from acetyl-CoA, and IPP and DMAPP from mevalonate, respectively. The bottom portions of MVA pathway from Streptococcus pneumonia, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Saccharomyces cerevisiae were compared with exogenous mevalonate supplementation for beta-carotene production in recombinant Escherichia coli harboring beta-carotene synthesis genes. The E. coli harboring the bottom MVA pathway of S. pneumoniae produced the highest amount of beta-carotene. The top portions of MVA pathway were also compared and the top MVA pathway of E. faecalis was found out to be the most efficient for mevalonate production in E. coli. The whole MVA pathway was constructed by combining the bottom and top portions of MVA pathway of S. pneumoniae and E. faecalis, respectively. The recombinant E. coli harboring the whole MVA pathway and beta-carotene synthesis genes produced high amount of beta-carotene even without exogenous mevalonate supplementation. When comparing various E. coli strains - MG1655, DH5alpha, S17-1, XL1-Blue and BL21 - the DH5alpha was found to be the best beta-carotene producer. Using glycerol as the carbon source for beta-carotene production was found to be superior to glucose, galactose, xylose and maltose. The recombinant E. coli DH5alpha harboring the whole MVA pathway and beta-carotene synthesis genes produced beta-carotene of 465mg/L at glycerol concentration of 2% (w/v).


Metabolic Engineering | 2011

Metabolic engineering of Escherichia coli for α-farnesene production.

Chong-Long Wang; Sang-Hwal Yoon; Hui-Jeong Jang; Young-Ryun Chung; Jae-Yean Kim; Eui-Sung Choi; Seon-Won Kim

Sesquiterpenes are important materials in pharmaceuticals and industry. Metabolic engineering has been successfully used to produce these valuable compounds in microbial hosts. However, the microbial potential of sesquiterpene production is limited by the poor heterologous expression of plant sesquiterpene synthases and the deficient FPP precursor supply. In this study, we engineered E. coli to produce α-farnesene using a codon-optimized α-farnesene synthase and an exogenous MVA pathway. Codon optimization of α-farnesene synthase improved both the synthase expression and α-farnesene production. Augmentation of the metabolic flux for FPP synthesis conferred a 1.6- to 48.0-fold increase in α-farnesene production. An additional increase in α-farnesene production was achieved by the protein fusion of FPP synthase and α-farnesene synthase. The engineered E. coli strain was able to produce 380.0 mg/L of α-farnesene, which is an approximately 317-fold increase over the initial production of 1.2 mg/L.


Applied and Environmental Microbiology | 2002

Metabolic Engineering of a Novel Propionate-Independent Pathway for the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Recombinant Salmonella enterica Serovar Typhimurium

Ilana S. Aldor; Seon-Won Kim; Kristala L. J. Prather; Jay D. Keasling

ABSTRACT A pathway was metabolically engineered to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable thermoplastic with proven commercial applications, from a single, unrelated carbon source. An expression system was developed in which a prpC strain of Salmonella enterica serovar Typhimurium, with a mutation in the ability to metabolize propionyl coenzyme A (propionyl-CoA), served as the host for a plasmid harboring the Acinetobacter polyhydroxyalkanoate synthesis operon (phaBCA) and a second plasmid with the Escherichia coli sbm and ygfG genes under an independent promoter. The sbm and ygfG genes encode a novel (2R)-methylmalonyl-CoA mutase and a (2R)-methylmalonyl-CoA decarboxylase, respectively, which convert succinyl-CoA, derived from the tricarboxylic acid cycle, to propionyl-CoA, an essential precursor of 3-hydroxyvalerate (HV). The S. enterica system accumulated PHBV with significant HV incorporation when the organism was grown aerobically with glycerol as the sole carbon source. It was possible to vary the average HV fraction in the copolymer by adjusting the arabinose or cyanocobalamin (precursor of coenzyme B12) concentration in the medium.


Biotechnology Progress | 2008

Increased β-Carotene Production in Recombinant Escherichia coli Harboring an Engineered Isoprenoid Precursor Pathway with Mevalonate Addition

Sang-Hwal Yoon; Hye-Min Park; Ju-Eun Kim; Sook-Hee Lee; Myung Suk Choi; Jae-Yean Kim; Deok-Kun Oh; Jay D. Keasling; Seon-Won Kim

When pT‐LYCm4 containing lycopene synthetic genes was co‐transformed with pSUcrtY or pSHcrtY containing crtY gene of Pantoea ananatis (P. ananatis) or Pantoea agglomerans (P.agglomerans), β‐carotene productions of 36 and 35 mg/L were obtained, respectively. No lycopene was detected in the β‐carotene production culture. pT‐HB, constructed by addition of P. ananatis crtY gene into pT‐LYCm4, was used for co‐transformation with pSdxs and pSSN12Didi, which increased isopentenyl diphosphate and dimethylallyl diphosphate synthesis. β‐Carotene production significantly increased 1.5‐fold (51 mg/L) with the amplification of the dxs gene through pSdxs and 4‐fold (135 mg/L) with the mevalonate bottom pathway of pSSN12Didi in the presence of 3.3 mM mevalonate. The pT‐DHB, constructed by integrating the dxs gene into pT‐HB, was used for cotransformation of Escherichia coli (E. coli) harboring pSSN12Didi, resulting in β‐carotene production of 141 mg/L. Recombinant E. coli harboring pT‐DHB and pSSN12Didi was used to maximize β‐carotene production by adjusting the available amounts of glycerol, a carbon source, and mevalonate, the precursor of the mevalonate bottom pathway. When recombinant E. coli was given 16.5 mM mevalonate and 2.5% (w/v) glycerol, β‐carotene production of 503 mg/L in concentration and 49.3 mg/g DCW in content was obtained at 144 h, which was the highest level of carotenoid production in E. coli ever reported in the literature.


Plant Physiology | 2009

The Arabidopsis Callose Synthase Gene GSL8 Is Required for Cytokinesis and Cell Patterning

Xiong-Yan Chen; Lin Liu; EunKyoung Lee; Xiao Han; Yeonggil Rim; Hyosub Chu; Seon-Won Kim; Fred D. Sack; Jae-Yean Kim

Cytokinesis is the division of the cytoplasm and its separation into two daughter cells. Cell plate growth and cytokinesis appear to require callose, but direct functional evidence is still lacking. To determine the role of callose and its synthesis during cytokinesis, we identified and characterized mutants in many members of the GLUCAN SYNTHASE-LIKE (GSL; or CALLOSE SYNTHASE) gene family in Arabidopsis (Arabidopsis thaliana). Most gsl mutants (gsl1–gsl7, gsl9, gsl11, and gsl12) exhibited roughly normal seedling growth and development. However, mutations in GSL8, which were previously reported to be gametophytic lethal, were found to produce seedlings with pleiotropic defects during embryogenesis and early vegetative growth. We found cell wall stubs, two nuclei in one cell, and other defects in cell division in homozygous gsl8 insertional alleles. In addition, gsl8 mutants and inducible RNA interference lines of GSL8 showed reduced callose deposition at cell plates and/or new cell walls. Together, these data show that the GSL8 gene encodes a putative callose synthase required for cytokinesis and seedling maturation. In addition, gsl8 mutants disrupt cellular and tissue-level patterning, as shown by the presence of clusters of stomata in direct contact and by islands of excessive cell proliferation in the developing epidermis. Thus, GSL8 is required for patterning as well as cytokinesis during Arabidopsis development.


Biotechnology and Bioengineering | 2010

Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway

Chong-Long Wang; Sang-Hwal Yoon; Asad Ali Shah; Young-Ryun Chung; Jae-Yean Kim; Eui-Sung Choi; Jay D. Keasling; Seon-Won Kim

Farnesol (FOH) production has been carried out in metabolically engineered Escherichia coli. FOH is formed through the depyrophosphorylation of farnesyl pyrophosphate (FPP), which is synthesized from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) by FPP synthase. In order to increase FPP synthesis, E. coli was metabolically engineered to overexpress ispA and to utilize the foreign mevalonate (MVA) pathway for the efficient synthesis of IPP and DMAPP. Two‐phase culture using a decane overlay of the culture broth was applied to reduce volatile loss of FOH produced during culture and to extract FOH from the culture broth. A FOH production of 135.5 mg/L was obtained from the recombinant E. coli harboring the pTispA and pSNA plasmids for ispA overexpression and MVA pathway utilization, respectively. It is interesting to observe that a large amount of FOH could be produced from E. coli without FOH synthase by the augmentation of FPP synthesis. Introduction of the exogenous MVA pathway enabled the dramatic production of FOH by E. coli while no detectable FOH production was observed in the endogenous MEP pathway‐only control. Biotechnol. Bioeng. 2010;107: 421–429.


Physiologia Plantarum | 2009

Proteomic analysis of the secretome of rice calli

Won Kyong Cho; Xiong Yan Chen; Hyosub Chu; Yeonggil Rim; Suwha Kim; Sun Tae Kim; Seon-Won Kim; Zee-Yong Park; Jae-Yean Kim

The cell wall and extracellular matrix in higher plants include secreted proteins that play critical roles in a wide range of cellular processes, such as structural integrity and biogenesis. Compared with the intensive cell wall proteomic studies in Arabidopsis, the list of cell wall proteins identified in monocot species is lacking. Therefore, we conducted a large-scale proteomic analysis of secreted proteins from rice. Highly purified secreted rice proteins were obtained from the medium of a suspension of callus culture and were analyzed with multidimensional protein identification technology (MudPIT). As a result, we could detect a total of 555 rice proteins by MudPIT analysis. Based on bioinformatic analyses, 27.7% (154 proteins) of the identified proteins are considered to be secreted proteins because they possess a signal peptide for the secretory pathway. Among the 154 identified proteins, 27% were functionally categorized as stress response proteins, followed by metabolic proteins (26%) and factors involved in protein modification (24%). Comparative analysis of cell wall proteins from Arabidopsis and rice revealed that one third of the secreted rice proteins overlapped with those of Arabidopsis. Furthermore, 25 novel rice-specific secreted proteins were found. This work presents the large scale of the rice secretory proteome from culture medium, which contributes to a deeper understanding of the rice secretome.


Journal of Plant Physiology | 2009

Proteomics of weakly bound cell wall proteins in rice calli

Xiong-Yan Chen; Sun Tae Kim; Won Kyong Cho; Yeonggil Rim; Suwha Kim; Seon-Won Kim; Kyu Young Kang; Zee Yong Park; Jae-Yean Kim

In the present work, we present a proteomic analysis of weakly bound cell wall proteins (CWPs) in rice. CWPs from rice calli were extracted with mannitol/CaCl(2), followed by back extraction with water-saturated phenol. The isolated CWPs were evaluated for contamination by cytosolic proteins by measuring the enzymatic activity of an intracellular marker (glucose-6-phosphate dehydrogenase). This revealed the presence of low levels of intracellular proteins and a significant enrichment of CWPs, as compared to the total extract. Protein samples were digested in gels with trypsin and analyzed using the multidimensional protein identification technology (MudPIT). A total of 292 proteins were identified, which included numerous classical CWPs and antioxidant proteins. Bioinformatics analysis showed that 72.6% of these proteins possessed a signal peptide, and a total of 198 proteins were determined to be CWPs in rice. Functional classification divided the extracellular proteins into different groups, including glycosyl hydrolases (23%), antioxidant proteins (12%), cell wall structure-related proteins (6%), metabolic pathways (9%), protein modifications (4%), defense (4%), and protease inhibitors (3%). Furthermore, comparative analysis of our identified rice CWPs with known Arabidopsis CWPs revealed 25 novel rice-specific CWPs. The study described here is an unprecedented large-scale analysis of CWPs in rice.

Collaboration


Dive into the Seon-Won Kim's collaboration.

Top Co-Authors

Avatar

Chong-Long Wang

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sook-Hee Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sang-Hwal Yoon

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jung-Hun Kim

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Eui-Sung Choi

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar

Jae-Yean Kim

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Hee-Kyoung Ryu

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Asad Ali Shah

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Amitabha Das

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge