Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seong Woon Roh is active.

Publication


Featured researches published by Seong Woon Roh.


The ISME Journal | 2010

Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing

Seong Woon Roh; Kyoung-Ho Kim; Young-Do Nam; Ho-Won Chang; Eun-Jin Park; Jin-Woo Bae

Little is known about the archaeal diversity of fermented seafood; most of the earlier studies of fermented food have focused on lactic acid bacteria (LAB) in the fermentation process. In this study, the archaeal and bacterial diversity in seven kinds of fermented seafood were culture-independently examined using barcoded pyrosequencing and PCR–denaturing gradient gel electrophoresis (DGGE) methods. The multiplex barcoded pyrosequencing was performed in a single run, with multiple samples tagged uniquely by multiplex identifiers, using different primers for Archaea or Bacteria. Because PCR–DGGE analysis is a conventional molecular ecological approach, this analysis was also performed on the same samples and the results were compared with the results of the barcoded pyrosequencing analysis. A total of 13 372 sequences were retrieved from 15 898 pyrosequencing reads and were analyzed to evaluate the diversity of the archaeal and bacterial populations in seafood. The most predominant types of archaea and bacteria identified in the samples included extremely halophilic archaea related to the family Halobacteriaceae; various uncultured mesophilic Crenarchaeota, including Crenarchaeota Group I.1 (CG I.1a and CG I.1b), Marine Benthic Group B (MBG-B), and Miscellaneous Crenarchaeotic Group (MCG); and LAB affiliated with genus Lactobacillus and Weissella. Interestingly, numerous uncultured mesophilic Crenarchaeota groups were as ubiquitous in the fermented seafood as in terrestrial and aquatic niches; the existence of these Crenarchaeota groups has not been reported in any fermented food. These results indicate that the archaeal populations in the fermented seafood analyzed are diverse and include the halophilic and mesophilic groups, and that barcoded pyrosequencing is a promising and cost-effective method for analyzing microbial diversity compared with conventional approaches.


PLOS ONE | 2011

Comparative Analysis of Korean Human Gut Microbiota by Barcoded Pyrosequencing

Young Do Nam; Mi Ja Jung; Seong Woon Roh; Min-Soo Kim; Jin-Woo Bae

Human gut microbiota plays important roles in harvesting energy from the diet, stimulating the proliferation of the intestinal epithelium, developing the immune system, and regulating fat storage in the host. Characterization of gut microbiota, however, has been limited to western people and is not sufficiently extensive to fully describe microbial communities. In this study, we investigated the overall composition of the gut microbiota and its host specificity and temporal stability in 20 Koreans using 454-pyrosequencing with barcoded primers targeting the V1 to V3 region of the bacterial 16S rRNA gene. A total of 303,402 high quality reads covered each sample and 8,427 reads were analyzed on average. The results were compared with those of individuals from the USA, China and Japan. In general, microbial communities were dominated by five previously identified phyla: Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Proteobacteria. UPGMA cluster analysis showed that the species composition of gut microbiota was host-specific and stable over the duration of the test period, but the relative abundance of each member fluctuated. 43 core Korean gut microbiota were identified by comparison of sequences from each individual, of which 15 species level phylotypes were related to previously-reported butyrate-producing bacteria. UniFrac analysis revealed that human gut microbiota differed between countries: Korea, USA, Japan and China, but tended to vary less between individual Koreans, suggesting that gut microbial composition is related to internal and external characteristics of each country member such as host genetics and diet styles.


Applied and Environmental Microbiology | 2014

Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host.

Ji-Hyun Yun; Seong Woon Roh; Tae Woong Whon; Mi-Ja Jung; Min-Soo Kim; Doo-Sang Park; Changmann Yoon; Young-Do Nam; Yun-Ji Kim; Jung-Hye Choi; Joon-Yong Kim; Na-Ri Shin; Sung-Hee Kim; Won-Jae Lee; Jin-Woo Bae

ABSTRACT Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (±97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities.


Applied and Environmental Microbiology | 2008

Amplification of Uncultured Single-Stranded DNA Viruses from Rice Paddy Soil

Kyoung-Ho Kim; Ho-Won Chang; Young-Do Nam; Seong Woon Roh; Min-Soo Kim; Youlboong Sung; Che Ok Jeon; Hee-Mock Oh; Jin-Woo Bae

ABSTRACT Viruses are known to be the most numerous biological entities in soil; however, little is known about their diversity in this environment. In order to explore the genetic diversity of soil viruses, we isolated viruses by centrifugation and sequential filtration before performing a metagenomic investigation. We adopted multiple-displacement amplification (MDA), an isothermal whole-genome amplification method with φ29 polymerase and random hexamers, to amplify viral DNA and construct clone libraries for metagenome sequencing. By the MDA method, the diversity of both single-stranded DNA (ssDNA) viruses and double-stranded DNA viruses could be investigated at the same time. On the contrary, by eliminating the denaturing step in the MDA reaction, only ssDNA viral diversity could be explored selectively. Irrespective of the denaturing step, more than 60% of the soil metagenome sequences did not show significant hits (E-value criterion, 0.001) with previously reported viral sequences. Those hits that were considered to be significant were also distantly related to known ssDNA viruses (average amino acid similarity, approximately 34%). Phylogenetic analysis showed that replication-related proteins (which were the most frequently detected proteins) related to those of ssDNA viruses obtained from the metagenomic sequences were diverse and novel. Putative circular genome components of ssDNA viruses that are unrelated to known viruses were assembled from the metagenomic sequences. In conclusion, ssDNA viral diversity in soil is more complex than previously thought. Soil is therefore a rich pool of previously unknown ssDNA viruses.


Trends in Biotechnology | 2010

Comparing microarrays and next-generation sequencing technologies for microbial ecology research

Seong Woon Roh; Guy C.J. Abell; Kyoung-Ho Kim; Young-Do Nam; Jin-Woo Bae

Recent advances in molecular biology have resulted in the application of DNA microarrays and next-generation sequencing (NGS) technologies to the field of microbial ecology. This review aims to examine the strengths and weaknesses of each of the methodologies, including depth and ease of analysis, throughput and cost-effectiveness. It also intends to highlight the optimal application of each of the individual technologies toward the study of a particular environment and identify potential synergies between the two main technologies, whereby both sample number and coverage can be maximized. We suggest that the efficient use of microarray and NGS technologies will allow researchers to advance the field of microbial ecology, and importantly, improve our understanding of the role of microorganisms in their various environments.


Applied and Environmental Microbiology | 2011

Diversity and Abundance of Single-Stranded DNA Viruses in Human Feces

Min-Soo Kim; Eun-Jin Park; Seong Woon Roh; Jin-Woo Bae

ABSTRACT In this study, we investigated the abundance and diversity of single-stranded DNA (ssDNA) viruses in fecal samples from five healthy individuals through a combination of serial filtration and CsCl gradient ultracentrifugation. Virus abundance ranged from 108 to 109 per gram of feces, and virus-to-bacterium ratios were much lower (less than 0.1) than those observed in aquatic environments (5 to 10). Viral DNA was extracted and randomly amplified using phi29 polymerase and analyzed through high-throughput 454 pyrosequencing. Among 400,133 sequences, an average of 86.2% viromes were previously uncharacterized in public databases. Among previously known viruses, double-stranded DNA podophages (52 to 74%), siphophages (11 to 30%), myophages (1 to 4%), and ssDNA microphages (3 to 9%) were major constituents of human fecal viromes. A phylogenetic analysis of 24 large contigs of microphages based on conserved capsid protein sequences revealed five distinct newly discovered evolutionary microphage groups that were distantly related to previously known microphages. Moreover, putative capsid protein sequences of five contigs were closely related to prophage-like sequences in the genomes of three Bacteroides and three Prevotella strains, suggesting that Bacteroides and Prevotella are the sources of infecting microphages in their hosts.


International Journal of Food Microbiology | 2008

Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis.

Ho-Won Chang; Kyoung-Ho Kim; Young-Do Nam; Seong Woon Roh; Min-Soo Kim; Che Ok Jeon; Hee-Mock Oh; Jin-Woo Bae

Kimchi is a traditional Korean food that is fermented from vegetables such as Chinese cabbage and radish. Many bacteria are involved in kimchi fermentation and lactic acid bacteria are known to perform significant roles. Although kimchi fermentation presents a range of environmental conditions that could support many different archaea and yeasts, their molecular diversity within this process has not been studied. Here, we use PCR-denaturing gradient gel electrophoresis (DGGE) targeting the 16S and 26S rRNA genes, to characterize bacterial, archaeal and yeast dynamics during various types of kimchi fermentation. The DGGE analysis of archaea expressed a change of DGGE banding patterns during kimchi fermentation, however, no significant change was observed in the yeast DGGE banding patterns during kimchi fermentation. No significant difference was indicated in the archaeal DGGE profile among different types of kimchi. In the case of yeasts, the clusters linked to the manufacturing corporation. Haloarchaea such as Halococcus spp., Natronococcus spp., Natrialba spp. and Haloterrigena spp., were detected as the predominant archaea and Lodderomyces spp., Trichosporon spp., Candida spp., Saccharomyces spp., Pichia spp., Sporisorium spp. and Kluyveromyces spp. were the most common yeasts.


Journal of Microbiology | 2008

Bacterial, archaeal, and eukaryal diversity in the intestines of Korean people

Young-Do Nam; Ho-Won Chang; Kyoung-Ho Kim; Seong Woon Roh; Min-Soo Kim; Mi-Ja Jung; Si-Woo Lee; Jong-Yeol Kim; Jung-Hoon Yoon; Jin-Woo Bae

The bacterial, archaeal, and eukaryal diversity in fecal samples from ten Koreans were analyzed and compared by using the PCR-fingerprinting method, denaturing gradient gel electrophoresis (DGGE). The bacteria all belonged to the Firmicutes and Bacteroidetes phyla, which were known to be the dominant bacterial species in the human intestine. Most of the archaeal sequences belonged to the methane-producing archaea but several halophilic archarea-related sequences were also detected unexpectedly. While a small number of eukaryal sequences were also detected upon DGGE analysis, these sequences were related to fungi and stramenopiles (Blastocystis hominis). With regard to the bacterial and archaeal DGGE analysis, all ten samples had one and two prominent bands, respectively, but many individual-specific bands were also observed. However, only five of the ten samples had small eukaryal DGGE bands and none of these bands was observed in all five samples. Unweighted pair group method and arithmetic averages clustering algorithm (UPGMA) clustering analysis revealed that the archaeal and bacterial communities in the ten samples had relatively higher relatedness (the average Dice coefficient values were 68.9 and 59.2% for archaea and bacteria, respectively) but the eukaryal community showed low relatedness (39.6%).


Journal of Virology | 2012

Metagenomic Characterization of Airborne Viral DNA Diversity in the Near-Surface Atmosphere

Tae Woong Whon; Min-Soo Kim; Seong Woon Roh; Na-Ri Shin; Hae-Won Lee; Jin-Woo Bae

ABSTRACT Airborne viruses are expected to be ubiquitous in the atmosphere but they still remain poorly understood. This study investigated the temporal and spatial dynamics of airborne viruses and their genotypic characteristics in air samples collected from three distinct land use types (a residential district [RD], a forest [FR], and an industrial complex [IC]) and from rainwater samples freshly precipitated at the RD site (RD-rain). Viral abundance exhibited a seasonal fluctuation in the range between 1.7 × 106 and 4.0 × 107 viruses m−3, which increased from autumn to winter and decreased toward spring, but no significant spatial differences were observed. Temporal variations in viral abundance were inversely correlated with seasonal changes in temperature and absolute humidity. Metagenomic analysis of air viromes amplified by rolling-circle phi29 polymerase-based random hexamer priming indicated the dominance of plant-associated single-stranded DNA (ssDNA) geminivirus-related viruses, followed by animal-infecting circovirus-related sequences, with low numbers of nanoviruses and microphages-related genomes. Particularly, the majority of the geminivirus-related viruses were closely related to ssDNA mycoviruses that infect plant-pathogenic fungi. Phylogenetic analysis based on the replication initiator protein sequence indicated that the airborne ssDNA viruses were distantly related to known ssDNA viruses, suggesting that a high diversity of viruses were newly discovered. This research is the first to report the seasonality of airborne viruses and their genetic diversity, which enhances our understanding of viral ecology in temperate regions.


Journal of Microbiology | 2008

Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment

Seong Woon Roh; Youlboong Sung; Young-Do Nam; Ho-Won Chang; Kyoung-Ho Kim; Jung-Hoon Yoon; Che Ok Jeon; Hee-Mock Oh; Jin-Woo Bae

A novel Gram-positive bacterium, designated SYB2T, was isolated from wastewater reservoir sediment, and a polyphasic taxonomic study was conducted based on its morphological, physiological, and biochemical features, as well as the analysis of its 16S rRNA gene sequence. During the phylogenetic analysis of the strain SYB2T, results of a 16S rRNA gene sequence analysis placed this bacterium in the genus Arthrobacter within the family Micrococcaceae. SYB2T and Arthrobacter protophormiae ATCC 19271T, the most closely related species, both exhibited a 16S rRNA gene sequence similarity of 98.99%. The genomic DNA G+C content of the novel strain was found to be 62.0 mol%. The predominant fatty acid composition was ante-iso-C15:0, anteiso-C17:0, iso-C16:0, and iso-C15:0. Analysis of 16S rRNA gene sequences and DNA-DNA related-ness, as well as physiological and biochemical tests, showed genotypic and phenotypic differences between strain SYB2T and other Arthrobacter species. The type strain of the novel species was identified as SYB2T (= KCTC 19291T= DSM 19449T).

Collaboration


Dive into the Seong Woon Roh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young-Do Nam

Korea University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daekyung Kim

Kyungpook National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kil-Nam Kim

Jeju National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge