Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seong-Yeol Park is active.

Publication


Featured researches published by Seong-Yeol Park.


Oncogene | 2011

Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas.

Hee-Jin Kwak; Yun-Hee Kim; Chun Kr; Woo Ym; Seong-Yeol Park; Jeong Ja; Jo Sh; Tae-Hyung Kim; Min Hs; Ji Soo Chae; Eui Ju Choi; Kim G; Sang-Hoon Shin; Gwak Hs; Su-Hyun Kim; Hong Ek; Lee Gk; Kyungho Choi; Jun Hoe Kim; Heon Yoo; Jong-Wan Park; Su-Jae Lee

Gliomas are associated with high mortality because of their exceedingly invasive character. As these tumors acquire their invasiveness from low-grade tumors, it is very important to understand the detailed molecular mechanisms of invasion onset. Recent evidences suggest the significant role of microRNAs in tumor invasion. Thus, we hypothesized that deregulation of microRNAs may be important for the malignant progression of gliomas. We found that the aberrant expression of miR-21 is responsible for glioma invasion by disrupting the negative feedback circuit of Ras/MAPK signaling, which is mediated by Spry2. Upregulation of miR-21 was triggered by tumor microenvironmental factors such as hyaluronan and growth factors in glioma cells lacking functional phosphatase and tensin homolog (PTEN), but not harboring wild-type PTEN. Consistently with these in vitro results, Spry2 protein levels were significantly decreased in 79.7% of invasive WHO grade II–IV human glioma tissues, but not in non-invasive grade I and normal tissues. The Spry2 protein levels were not correlated with their mRNA levels, but inversely correlated with miR-21 levels. Taken together, these results suggest that the post-transcriptional regulation of Spry2 by miR-21 has an essential role on the malignant progression of human gliomas. Thus, Spry2 may be a novel therapeutic target for treating gliomas.


Oncogene | 2012

NF-κB and STAT3 cooperatively induce IL6 in starved cancer cells

Yoon S; Woo Su; Kang Jh; Kyung-Su Kim; Shin Hj; Gwak Hs; Seong-Yeol Park; Chwae Yj

A number of genes involved in tumorigenesis have been known to be controlled by signal transducer and activator of transcription 3 (STAT3) and NF-κB, either synergistically or individually. In starved cancer cells, we found that NF-κB was activated through endoplasmic reticulum stress signals, which depend on reactive oxygen species, cytosolic calcium and preserved translation of NF-κB p65 subunit, but independent of IκBα serine phosphorylation, thereby resulting in IL6 induction. STAT3 was required for proper induction of IL6 by NF-κB. They existed as identical nuclear complexes in proximal IL6 promoters, and STAT3 had critical roles in binding to IL6 promoters as well as nuclear retention of NF-κB. The conditioned media from starved cancer cells contained various secretory factors, such as IL6, IL9, VWF (von Willebrand factor), FREM1 (FRAS1 related extracellular matrix 1), SAA1 (serum amyloid A1), SDK1 (sidekick homolog 1) and ADAM12 (ADAM metallopeptidase domain 12), induced by NF-κB and STAT3 and promoted clonogenic capacities of cancer cells, and proliferation and migration of human umbilical vein endothelial cells. These results suggest novel survival strategies of cancer cells by which two oncogenic transcriptional factors, NF-κB and STAT3, are activated simultaneously by an intrinsic mechanism during stressful conditions of cancer cells, and they cooperatively induce various survival factors.


Journal of Cancer Research and Clinical Oncology | 2010

Transglutaminase 2 as a cisplatin resistance marker in non-small cell lung cancer

Kang-Seo Park; Hyun-Kyoung Kim; Jung-Hwa Lee; Yong-Bock Choi; Seong-Yeol Park; Sei-Hoon Yang; Soo-Youl Kim; Kyeong-Man Hong

PurposeRecently, it was reported that expression of transglutaminase 2 plays an important role in doxorubicin/cisplatin resistance in breast and ovarian cancer. The aims of this study were to verify the role of transglutaminase 2 in cisplatin response in non-small cell lung cancer (NSCLC) and to study if transglutaminase 2 gene (TGM2) methylation can be a molecular marker for good response to cisplatin.MethodsTGM2 promoter methylation was analyzed by sodium bisulfite sequencing. Cisplatin sensitivity was analyzed by treatment of cisplatin in NSCLC cell lines with/without TGM2 or TGM2 siRNA transfection.ResultsIn one-third of NSCLC cell lines, TGase 2 gene (TGM2) was silenced by promoter methylation. The TGM2 promoter-methylated cell lines (HCC-95 and HCC-1588) showed relatively higher sensitivity to cisplatin than the TGM2-expressing cell lines (NCI-H1299 and HCC-1195). Down-regulation and over-expression of TGM2 in those NSCLC cells also suggested a positive correlation of cisplatin sensitivity and TGM2 inhibition. With doxorubicin, the relationship was quite similar.ConclusionsWe showed that good responders of cisplatin in NSCLC could be identified by the promoter methylation of TGM2 and that TGase 2 inhibition appears to be an effective cisplatin-sensitizing modality in NSCLC.


Cytotherapy | 2010

Mesenchymal stromal cells inhibit graft-versus-host disease of mice in a dose-dependent manner

Sun-Young Joo; Kyung-Ah Cho; Yun-Jae Jung; Han-Seong Kim; Seong-Yeol Park; Yong-Bock Choi; Kyeong-Man Hong; So-Youn Woo; Ju-Young Seoh; Su Jin Cho; Kyung-Ha Ryu

BACKGROUND AIMS Graft-versus-host disease (GvHD) remains a major complication after allogeneic hematopoietic cell transplantation (HCT). Recent literature demonstrates a potential benefit of human mesenchymal stromal cells (MSC) for the treatment of refractory GvHD; however, the optimal dose remains uncertain. We set out to develop an animal model that can be used to study the effect of MSC on GvHD. METHODS A GvHD mouse model was established by transplanting C3H/he donor bone marrow (BM) cells and spleen cells into lethally irradiated BALB/c recipient mice. MSC were obtained from C3H/he mice and the C3H/10T1/2 murine MSC line. RESULTS The mRNA expression of Foxp3 in regional lymph nodes (LN) localized with T cells was markedly increased by the addition of C3H10T1/2 cells in a real-time polymerase chain reaction (PCR). Using a mixed lymphocyte reaction, we determined the optimal splenocyte proliferation inhibition dose (MSC:splenocyte ratios 1:2 and 1:1). Three different C3H10T1/2 cell doses (low, 0.5 x 10(6), intermediate, 1 x 10(6), and high, 2 x 10(6)) with a consistent splenocyte dose (1 x 10(6)) were evaluated for their therapeutic potential in an in vivo GvHD model. The clinical and histologic GvHD score and Kaplan-Meier survival rate were improved after MSC transplantation, and these results demonstrated a dose-dependent inhibition. CONCLUSIONS We conclude that MSC inhibit GvHD in a dose-dependent manner in this mouse model and this model can be used to study the effects of MSC on GvHD.


Apoptosis | 2013

p53 acetylation enhances Taxol-induced apoptosis in human cancer cells

Jae Hyeong Kim; Eun-Kyung Yoon; Hye-Jin Chung; Seong-Yeol Park; Kyeong-Man Hong; Chang Hun Lee; Yeon-Su Lee; Kyungho Choi; Young Il Yang; Kyung-Tae Kim; In-Hoo Kim

Microtubule inhibitors (MTIs) such as Taxol have been used for treating various malignant tumors. Although MTIs have been known to induce cell death through mitotic arrest, other mechanisms can operate in MTI-induced cell death. Especially, the role of p53 in this process has been controversial for a long time. Here we investigated the function of p53 in Taxol-induced apoptosis using p53 wild type and p53 null cancer cell lines. p53 was upregulated upon Taxol treatment in p53 wild type cells and deletion of p53 diminished Taxol-induced apoptosis. p53 target proteins including MDM2, p21, BAX, and β-isoform of PUMA were also upregulated by Taxol in p53 wild type cells. Conversely, when the wild type p53 was re-introduced into two different p53 null cancer cell lines, Taxol-induced apoptosis was enhanced. Among post-translational modifications that affect p53 stability and function, p53 acetylation, rather than phosphorylation, increased significantly in Taxol-treated cells. When acetylation was enhanced by anti-Sirt1 siRNA or an HDAC inhibitor, Taxol-induced apoptosis was enhanced, which was not observed in p53 null cells. When an acetylation-defective mutant of p53 was re-introduced to p53 null cells, apoptosis was partially reduced compared to the re-introduction of the wild type p53. Thus, p53 plays a pro-apoptotic role in Taxol-induced apoptosis and acetylation of p53 contributes to this pro-apoptotic function in response to Taxol in several human cancer cell lines, suggesting that enhancing acetylation of p53 could have potential implication for increasing the sensitivity of cancer cells to Taxol.


Differentiation | 2015

miR-34a inhibits differentiation of human adipose tissue-derived stem cells by regulating cell cycle and senescence induction.

H. Park; Pak Hj; Yang Dy; Yae-Jean Kim; Choi Wj; Seong-Yeol Park; Jaebum Cho; Keun Woo Lee

MicroRNAs (miRNAs) are critical in the maintenance, differentiation, and lineage commitment of stem cells. Stem cells have the unique property to differentiate into tissue-specific cell types (lineage commitment) during cell division (self-renewal). In this study, we investigated whether miR-34a, a cell cycle-regulating microRNA, could control the stem cell properties of adipose tissue-derived stem cells (ADSCs). First, we found that the expression level of miR-34a was increased as the cell passage number was increased. This finding, however, was inversely correlated with our finding that the overexpression of miR-34a induced the decrease of cell proliferation. In addition, miR-34a overexpression decreased the expression of various cell cycle regulators such as CDKs (-2, -4, -6) and cyclins (-E, -D), but not p21 and p53. The cell cycle analysis showed accumulation of dividing cells at S phase by miR-34a, which was reversible by co-treatment with anti-miR-34a. The potential of adipogenesis and osteogenesis of ADSCs was also decreased by miR-34a overexpression, which was recovered by co-treatment with anti-miR-34a. The surface expression of stem cell markers including CD44 was also down-regulated by miR-34a overexpression as similar to that elicited by cell cycle inhibitors. miR-34a also caused a significant decrease in mRNA expression of stem cell transcription factors as well as STAT-3 expression and phosphorylation. Cytokine profiling revealed that miR-34a significantly modulated IL-6 and -8 production, which was strongly related to cellular senescence. These data suggest the importance of miR-34a for the fate of ADSCs toward senescence rather than differentiation.


Molecular Cancer | 2011

Transglutaminase 2 as an independent prognostic marker for survival of patients with non-adenocarcinoma subtype of non-small cell lung cancer

Chang-Min Choi; Se-Jin Jang; Seong-Yeol Park; Yong-Bock Choi; Jae-Heon Jeong; Dae-Seok Kim; Hyun-Kyoung Kim; Kang-Seo Park; Byung-Ho Nam; Hyeong-Ryul Kim; S. Kim; Kyeong-Man Hong

BackgroundExpression of transglutaminase 2 (TGase 2) is related to invasion and resistance to chemotherapeutic agents in several cancer cells. However, there has been only limited clinical validation of TGase 2 as an independent prognostic marker in cancer.MethodsThe significance of TGase 2 expression as an invasive/migratory factor was addressed by in vitro assays employing down-regulation of TGase 2. TGase 2 expression as a prognostic indicator was assessed in 429 Korean patients with early-stage non-small cell lung cancer (NSCLC) by immunohistochemical staining.ResultsTGase 2 expression increased the invasive and migratory properties of NSCLC cells in vitro, which might be related to the induction of MMP-9. In the analysis of the immunohistochemical staining, TGase 2 expression in tumors was significantly correlated with recurrence in NSCLC (p = 0.005) or in the non-adenocarcinoma subtype (p = 0.031). Additionally, a multivariate analysis also showed a significant correlation between strong TGase 2 expression and shorter disease-free survival (DFS) in NSCLC (p = 0.029 and HR = 1.554) and in the non-adenocarcinoma subtype (p = 0.030 and HR = 2.184). However, the correlation in the adenocarcinoma subtype was not significant.ConclusionsTGase 2 expression was significantly correlated with recurrence and shorter DFS in NSCLC, especially in the non-adenocarcinoma subtype including squamous cell carcinoma.


Cancer Research | 2016

Deguelin Analogue SH-1242 Inhibits Hsp90 Activity and Exerts Potent Anticancer Efficacy with Limited Neurotoxicity

Lee Sc; Hye-Young Min; Hyunsung Choi; Song Yi Bae; Ki Ho Park; Soonsil Hyun; Hyo-Suk Lee; Joon Ho Moon; S Park; Jun Yong Kim; Hongchan An; Seong-Yeol Park; Jinsoo Seo; S. Lee; Young Myeong Kim; Hyun-Ju Park; Sunhwa Lee; Jung-Yun Lee; K.-W. Kim; Young-Ger Suh; Hong-Gu Lee

The Hsp90 facilitates proper folding of signaling proteins associated with cancer progression, gaining attention as a target for therapeutic intervention. The natural rotenoid deguelin was identified as an Hsp90 inhibitor, but concerns about neurotoxicity have limited prospects for clinical development. In this study, we report progress on deguelin analogues that address this limitation, focusing on the novel analogue SH-1242 as a candidate to broadly target human lung cancer cells, including those that are chemoresistant or harboring KRAS mutations. In a KRAS-driven mouse model of lung cancer, SH-1242 administration reduced tumor multiplicity, volume, and load. Similarly, in human cell line-based or patient-derived tumor xenograft models, SH-1242 induced apoptosis and reduced tumor vasculature in the absence of detectable toxicity. In contrast to deguelin, SH-1242 toxicity was greatly reduced in normal cells and when administered to rats did not produce obvious histopathologic features in the brain. Mechanistic studies revealed that SH-1242 bound to the C-terminal ATP-binding pocket of Hsp90, disrupting the ability to interact with its co-chaperones and clients and triggering a degradation of client proteins without affecting Hsp70 expression. Taken together, our findings illustrate the superior properties of SH-1242 as an Hsp90 inhibitor and as an effective antitumor and minimally toxic agent, providing a foundation for advancing further preclinical and clinical studies.


Rheumatology | 2016

CD3Z hypermethylation is associated with severe clinical manifestations in systemic lupus erythematosus and reduces CD3ζ-chain expression in T cells

Kyeong-Man Hong; Hyun-Kyoung Kim; Seong-Yeol Park; Shiv Poojan; Mi-Kyung Kim; Joohon Sung; Betty P. Tsao; Jennifer M. Grossman; Ornella J Rullo; Jennifer Mp Woo; Deborah McCurdy; Lisa G. Rider; Frederick W. Miller; Yeong-Wook Song

Objective. The importance of hypomethylation in SLE is well recognized; however, the significance of hypermethylation has not been well characterized. We screened hypermethylated marks in SLE and investigated their possible implications. Methods. DNA methylation marks were screened in SLE whole-blood DNA by microarray, and two marks (CD3Z and VHL hypermethylations) were confirmed by a methylation single-base extension method in two independent ethnic cohorts consisting of 207 SLE patients and 151 controls. The correlation with clinical manifestations and the genetic influence on those epigenetic marks were analysed. Results. Two epigenetic marks, CD3Z and VHL hypermethylation, were significantly correlated with SLE: CD3Z hypermethylation (odds ratio = 7.76; P = 1.71 × 10−13) and VHL hypermethylation (odds ratio = 3.77; P = 3.20 × 10−8), and the increased CD3Z methylation was correlated with downregulation of the CD3&zgr;-chain in SLE T cells. In addition, less genetic influence on CD3Z methylation relative to VHL methylation was found in analyses of longitudinal and twin samples. Furthermore, a higher CD3Z methylation level was significantly correlated with a higher SLE disease activity index and more severe clinical manifestations, such as proteinuria, haemolytic anaemia and thrombocytopenia, whereas VHL hypermethylation was not. Conclusion. CD3Z hypermethylation is an SLE risk factor that can be modified by environmental factors and is associated with more severe SLE clinical manifestations, which are related to deranged T cell function by downregulating the CD3&zgr;-chain.


Annals of Oncology | 2017

Complex chromosomal rearrangements by single catastrophic pathogenesis in NUT midline carcinoma

June Koo Lee; Sandra Louzada; Y. An; Samyong Kim; Sun-Whe Kim; Youk J; Seong-Yeol Park; S. H. Koo; Bhumsuk Keam; Yoon Kyung Jeon; Ku Jl; Fengtang Yang; Tae Min Kim; Young Seok Ju

Background Nuclear protein in testis (NUT) midline carcinoma (NMC) is a rare aggressive malignancy often occurring in the tissues of midline anatomical structures. Except for the pathognomonic BRD3/4–NUT rearrangement, the comprehensive landscape of genomic alterations in NMCs has been unexplored. Patients and methods We investigated three NMC cases, including two newly diagnosed NMC patients in Seoul National University Hospital, and a previously reported cell line (Ty-82). Whole-genome and transcriptome sequencing were carried out for these cases, and findings were validated by multiplex fluorescence in situ hybridization and using individual fluorescence probes. Results Here, we present the first integrative analysis of whole-genome sequencing, transcriptome sequencing and cytogenetic characterization of NUT midline carcinomas. By whole-genome sequencing, we identified a remarkably similar pattern of highly complex genomic rearrangements (previously denominated as chromoplexy) involving the BRD3/4–NUT oncogenic rearrangements in two newly diagnosed NMC cases. Transcriptome sequencing revealed that these complex rearrangements were transcribed as very simple BRD3/4–NUT fusion transcripts. In Ty-82 cells, we also identified a complex genomic rearrangement involving the BRD4–NUT rearrangement underlying the simple t(15;19) karyotype. Careful inspections of rearrangement breakpoints indicated that these rearrangements were likely attributable to single catastrophic events. Although the NMC genomes had >3000 somatic point mutations, canonical oncogenes or tumor suppressor genes were rarely affected, indicating that they were largely passenger events. Mutational signature analysis showed predominant molecular clock-like signatures in all three cases (accounting for 54%−75% of all base substitutions), suggesting that NMCs may arise from actively proliferating normal cells. Conclusion Taken together, our findings suggest that a single catastrophic event in proliferating normal cells could be sufficient for neoplastic transformation into NMCs.

Collaboration


Dive into the Seong-Yeol Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

June Koo Lee

Seoul National University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge