Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Seraphin Kuate is active.

Publication


Featured researches published by Seraphin Kuate.


Journal of Virology | 2004

S Protein of Severe Acute Respiratory Syndrome-Associated Coronavirus Mediates Entry into Hepatoma Cell Lines and Is Targeted by Neutralizing Antibodies in Infected Patients

Heike Hofmann; Kim Hattermann; Andrea Marzi; Thomas Gramberg; Martina Geier; Mandy Krumbiegel; Seraphin Kuate; Klaus Überla; Matthias Niedrig; Stefan Pöhlmann

ABSTRACT The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia with a fatal outcome in approximately 10% of patients. SARS-CoV is not closely related to other coronaviruses but shares a similar genome organization. Entry of coronaviruses into target cells is mediated by the viral S protein. We functionally analyzed SARS-CoV S using pseudotyped lentiviral particles (pseudotypes). The SARS-CoV S protein was found to be expressed at the cell surface upon transient transfection. Coexpression of SARS-CoV S with human immunodeficiency virus-based reporter constructs yielded viruses that were infectious for a range of cell lines. Most notably, viral pseudotypes harboring SARS-CoV S infected hepatoma cell lines but not T- and B-cell lines. Infection of the hepatoma cell line Huh-7 was also observed with replication-competent SARS-CoV, indicating that hepatocytes might be targeted by SARS-CoV in vivo. Inhibition of vacuolar acidification impaired infection by SARS-CoV S-bearing pseudotypes, indicating that S-mediated entry requires low pH. Finally, infection by SARS-CoV S pseudotypes but not by vesicular stomatitis virus G pseudotypes was efficiently inhibited by a rabbit serum raised against SARS-CoV particles and by sera from SARS patients, demonstrating that SARS-CoV S is a target for neutralizing antibodies and that such antibodies are generated in SARS-CoV-infected patients. Our results show that viral pseudotyping can be employed for the analysis of SARS-CoV S function. Moreover, we provide evidence that SARS-CoV infection might not be limited to lung tissue and can be inhibited by the humoral immune response in infected patients.


Journal of Virology | 2012

Replicating Adenovirus-Simian Immunodeficiency Virus (SIV) Recombinant Priming and Envelope Protein Boosting Elicits Localized, Mucosal IgA Immunity in Rhesus Macaques Correlated with Delayed Acquisition following a Repeated Low-Dose Rectal SIVmac251 Challenge

Peng Xiao; L. Jean Patterson; Seraphin Kuate; Egidio Brocca-Cofano; Michael A. Thomas; David Venzon; Jun Zhao; Janet DiPasquale; Claudio Fenizia; Eun Mi Lee; Irene Kalisz; Vaniambadi S. Kalyanaraman; Ranajit Pal; David C. Montefiori; Brandon F. Keele; Marjorie Robert-Guroff

ABSTRACT We have shown that sequential replicating adenovirus type 5 host range mutant human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) recombinant priming delivered first intranasally (i.n.) plus orally and then intratracheally (i.t.), followed by envelope protein boosting, elicits broad cellular immunity and functional, envelope-specific serum and mucosal antibodies that correlate with protection from high-dose SIV and simian/human immunodeficiency virus (SHIV) challenges in rhesus macaques. Here we extended these studies to compare the standard i.n./i.t. regimen with additional mucosal administration routes, including sublingual, rectal, and vaginal routes. Similar systemic cellular and humoral immunity was elicited by all immunization routes. Central and effector memory T cell responses were also elicited by the four immunization routes in bronchoalveolar lavage fluid and jejunal, rectal, and vaginal tissue samples. Cellular responses in vaginal tissue were more compartmentalized, being induced primarily by intravaginal administration. In contrast, all immunization routes elicited secretory IgA (sIgA) responses at multiple mucosal sites. Following a repeated low-dose intrarectal (i.r.) challenge with SIVmac251 at a dose transmitting one or two variants, protection against acquisition was not achieved except in one macaque in the i.r. immunized group. All immunized macaques exhibited reduced peak viremia compared to that of controls, correlated inversely with prechallenge serum antienvelope avidity, antibody-dependent cellular cytotoxicity (ADCC) titers, and percent antibody-dependent cell-mediated viral inhibition. Both antibody avidity and ADCC titers were correlated with the number of exposures required for infection. Notably, we show for the first time a significant correlation of vaccine-induced sIgA titers in rectal secretions with delayed acquisition. Further investigation of the characteristics and properties of the sIgA should elucidate the mechanism leading to this protective effect.


Vaccine | 2008

Enhancement of immunostimulatory properties of exosomal vaccines by incorporation of fusion-competent G protein of vesicular stomatitis virus

Vladimir Temchura; Matthias Tenbusch; Godwin Nchinda; Ghulam Nabi; Bettina Tippler; Maryna Zelenyuk; Oliver Wildner; Klaus Überla; Seraphin Kuate

Abstract Exosomes have been proposed as candidates for therapeutic immunization. The present study demonstrates that incorporation of the G protein of vesicular stomatitis virus (VSV-G) into exosome-like vesicles (ELVs) enhances their uptake and induces the maturation of dendritic cells. Targeting of VSV-G and ovalbumin as a model antigen to the same ELVs increased the cross-presentation of ovalbumin via an endosomal acidification mechanism. Immunization of mice with VSV-G and ovalbumin containing ELVs led to an increased IgG2a antibody response, expansion of antigen-specific CD8 T cells, strong in vivo CTL responses, and protection from challenge with ovalbumin expressing tumor cells. Thus, incorporation of VSV-G and targeting of antigens to ELVs are attractive strategies to improve exosomal vaccines.


Virology | 2003

Single-cycle immunodeficiency viruses provide strategies for uncoupling in vivo expression levels from viral replicative capacity and for mimicking live-attenuated SIV vaccines.

Seraphin Kuate; Christiane Stahl-Hennig; Peter ten Haaft; Jonathan L. Heeney; Klaus Überla

To reduce the risks associated with live-attenuated immunodeficiency virus vaccines, single-cycle immunodeficiency viruses (SCIVs) were developed by primer complementation and production of the vaccine in the absence of vif in a vif-independent cell line. After a single intravenous injection of SCIVs into rhesus monkeys, peak viral RNA levels of 10(3) to 10(4) copies/ml plasma were observed, indicating efficient expression of SCIV in the vaccinee. After booster immunizations with SCIVs, SIV-specific humoral and cellular immune responses were observed. Although the vaccine doses used in this pilot study could not protect vaccinees from subsequent intravenous challenge with pathogenic SIVmac239, our results demonstrate that the novel SCIV approach allows us to uncouple in vivo expression levels from the viral replicative capacity facilitating the analysis of the relationship between viral expression levels or viral genes and immune responses induced by SIV.


BMC Immunology | 2008

Coexpression of GM-CSF and antigen in DNA prime-adenoviral vector boost immunization enhances polyfunctional CD8+ T cell responses, whereas expression of GM-CSF antigen fusion protein induces autoimmunity

Matthias Tenbusch; Seraphin Kuate; Bettina Tippler; Nicole Gerlach; Simone Schimmer; Ulf Dittmer; Klaus Überla

BackgroundGranulocyte-macrophage colony-stimulating factor (GM-CSF) has shown promising results as a cytokine adjuvant for antiviral vaccines and in various models of tumor gene therapy. To explore whether the targeting of antigens to GM-CSF receptors on antigen-presenting cells enhances antigen-specific CD8 T-cell responses, fusion proteins of GM-CSF and ovalbumin (OVA) were expressed by DNA and adenoviral vector vaccines. In addition, bicistronic vectors allowing independent expression of the antigen and the cytokine were tested in parallel.ResultsIn vitro, the GM-CSF ovalbumin fusion protein (GM-OVA) led to the better stimulation of OVA-specific CD8+ T cells by antigen-presenting cells than OVA and GM-CSF given as two separate proteins. However, prime-boost immunizations of mice with DNA and adenoviral vector vaccines encoding GM-OVA suppressed CD8+ T-cell responses to OVA. OVA-specific IgG2a antibody levels were also reduced, while the IgG1 antibody response was enhanced. Suppression of CD8+ T cell responses by GM-OVA vaccines was associated with the induction of neutralizing antibodies to GM-CSF. In contrast, the coexpression of GM-CSF and antigens in DNA prime adenoviral boost immunizations led to a striking expansion of polyfunctional OVA-specific CD8+ T cells without the induction of autoantibodies.ConclusionThe induction of autoantibodies suggests a general note of caution regarding the use of highly immunogenic viral vector vaccines encoding fusion proteins between antigens and host proteins. In contrast, the expansion of polyfunctional OVA-specific CD8+ T cells after immunizations with bicistronic vectors further support a potential application of GM-CSF as an adjuvant for heterologous prime-boost regimens with genetic vaccines. Since DNA prime adenoviral vector boost regimenes are presently considered as one of the most efficient ways to induce CD8+ T cell responses in mice, non-human primates and humans, further enhancement of this response by GM-CSF is a striking observation.


Virology | 2007

Exosomal vaccines containing the S protein of the SARS coronavirus induce high levels of neutralizing antibodies.

Seraphin Kuate; Jindrich Cinatl; Hans Wilhelm Doerr; Klaus Überla

Abstract Infection with the SARS-associated coronavirus (SARS-CoV) induces an atypical pulmonary disease with a high lethality rate. Although the initial SARS epidemic was contained, sporadic outbreaks of the disease still occur, suggesting a continuous need for a vaccine against this virus. We therefore explored exosome-based vaccines containing the spike S proteins of SARS-CoV. S-containing exosomes were obtained by replacing the transmembrane and cytoplasmic domains of the S protein by those of VSV-G. The immunogenicity and efficacy of the S-containing exosomes were tested in mice and compared to an adenoviral vector vaccine expressing the S protein. Both, S-containing exosomes and the adenoviral vector vaccine induced neutralizing antibody titers. After priming with the SARS-S exosomal vaccine and boosting with the adenoviral vector the neutralizing antibody titers exceeded those observed in the convalescent serum of a SARS patient. Both approaches were effective in a SARS-S-expressing tumor challenge model and thus warrant further investigation.


Journal of Virology | 2007

Atraumatic Oral Spray Immunization with Replication-Deficient Viral Vector Vaccines

Christiane Stahl-Hennig; Seraphin Kuate; Monika Franz; You Suk Suh; Heribert Stoiber; Ulrike Sauermann; Klara Tenner-Racz; Stephen Norley; Ki Seok Park; Young Chul Sung; Ralph M. Steinman; Paul Racz; Klaus Überla

ABSTRACT The development of needle-free vaccines is one of the recently defined “grand challenges in global health” (H. Varmus, R. Klausner, R. Klausner, R. Zerhouni, T. Acharya, A. S. Daar, and P. A. Singer, Science 302:398-399, 2003). To explore whether a natural pathway to the inductive site of the mucosa-associated lymphatic tissue could be exploited for atraumatic immunization purposes, replication-deficient viral vector vaccines were sprayed directly onto the tonsils of rhesus macaques. Tonsillar immunization with viral vector vaccines encoding simian immunodeficiency virus (SIV) antigens induced cellular and humoral immune responses. Viral RNA levels after a stringent SIV challenge were reduced, providing a level of protection similar to that observed after systemic immunization with the same vaccines. Thus, atraumatic oral spray immunization with replication-deficient vectors can overcome the epithelial barrier, deliver the vaccine antigen to the mucosa-associated lymphatic tissue, and avoid induction of tolerance, providing a novel approach to circumvent acceptability problems of syringe and needle vaccines for children and in developing countries.


Journal of Gene Medicine | 2004

Production of lentiviral vectors by transient expression of minimal packaging genes from recombinant adenoviruses

Seraphin Kuate; Daniela Stefanou; Dennis Hoffmann; Oliver Wildner; Klaus Überla

The potential of lentiviral vectors for clinical gene therapy has not yet been evaluated. One of the reasons is the cytotoxicity of lentiviral packaging genes which makes the generation of stable producer cell lines difficult. Therefore, a novel packaging system for lentiviral vectors based on transient expression of packaging genes by recombinant adenoviruses was developed.


Retrovirology | 2009

Role of complement and antibodies in controlling infection with pathogenic simian immunodeficiency virus (SIV) in macaques vaccinated with replication-deficient viral vectors

Barbara Falkensammer; Barbara Rubner; Alexander Hiltgartner; Doris Wilflingseder; Christiane Stahl Hennig; Seraphin Kuate; Klaus Überla; Stephen Norley; Alexander Strasak; Paul Racz; Heribert Stoiber

BackgroundWe investigated the interplay between complement and antibodies upon priming with single-cycle replicating viral vectors (SCIV) encoding SIV antigens combined with Adeno5-SIV or SCIV pseudotyped with murine leukemia virus envelope boosting strategies. The vaccine was applied via spray-immunization to the tonsils of rhesus macaques and compared with systemic regimens.ResultsIndependent of the application regimen or route, viral loads were significantly reduced after challenge with SIVmac239 (p < 0.03) compared to controls. Considerable amounts of neutralizing antibodies were induced in systemic immunized monkeys. Most of the sera harvested during peak viremia exhibited a trend with an inverse correlation between complement C3-deposition on viral particles and plasma viral load within the different vaccination groups. In contrast, the amount of the observed complement-mediated lysis did not correlate with the reduction of SIV titres.ConclusionThe heterologous prime-boost strategy with replication-deficient viral vectors administered exclusively via the tonsils did not induce any neutralizing antibodies before challenge. However, after challenge, comparable SIV-specific humoral immune responses were observed in all vaccinated animals. Immunization with single cycle immunodeficiency viruses mounts humoral immune responses comparable to live-attenuated immunodeficiency virus vaccines.


Journal of Virology | 2006

Viral Determinants of Integration Site Preferences of Simian Immunodeficiency Virus-Based Vectors

Hella Monse; Stephanie Laufs; Seraphin Kuate; W. Jens Zeller; Stefan Fruehauf; Klaus Überla

ABSTRACT Preferential integration into transcriptionally active regions of genomes has been observed for retroviral vectors based on gamma-retroviruses and lentiviruses. However, differences in the integration site preferences were detected, which might be explained by differences in viral components of the preintegration complexes. Viral determinants of integration site preferences have not been defined. Therefore, integration sites of simian immunodeficiency virus (SIV)-based vectors produced in the absence of accessory genes or lacking promoter and enhancer elements were compared. Similar integration patterns for the different SIV vectors indicate that vif, vpr, vpx, nef, env, and promoter or enhancer elements are not required for preferential integration of SIV into transcriptionally active regions of genomes.

Collaboration


Dive into the Seraphin Kuate's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Venzon

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Racz

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar

Janet DiPasquale

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ghulam Nabi

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

Klara Tenner-Racz

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge