Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Serdal Kirmizialtin is active.

Publication


Featured researches published by Serdal Kirmizialtin.


Structure | 2012

How Conformational Dynamics of DNA Polymerase Select Correct Substrates: Experiments and Simulations

Serdal Kirmizialtin; Virginia Nguyen; Kenneth A. Johnson; Ron Elber

Nearly every enzyme undergoes a significant change in structure after binding its substrate. Experimental and theoretical analyses of the role of changes in HIV reverse transcriptase structure in selecting a correct substrate are presented. Atomically detailed simulations using the Milestoning method predict a rate and free energy profile of the conformational change commensurate with experimental data. A large conformational change occurring on a millisecond timescale locks the correct nucleotide at the active site but promotes release of a mismatched nucleotide. The positions along the reaction coordinate that decide the yield of the reaction are not determined by the chemical step. Rather, the initial steps of weak substrate binding and protein conformational transition significantly enrich the yield of a reaction with a correct substrate, whereas the same steps diminish the reaction probability of an incorrect substrate.


Biophysical Journal | 2012

RNA and Its Ionic Cloud: Solution Scattering Experiments and Atomically Detailed Simulations

Serdal Kirmizialtin; Suzette A. Pabit; Steve P. Meisburger; Lois Pollack; Ron Elber

RNA molecules play critical roles in many cellular processes. Traditionally viewed as genetic messengers, RNA molecules were recently discovered to have diverse functions related to gene regulation and expression. RNA also has great potential as a therapeutic and a tool for further investigation of gene regulation. Metal ions are an integral part of RNA structure and should be considered in any experimental or theoretical study of RNA. Here, we report a multidisciplinary approach that combines anomalous small-angle x-ray scattering and molecular-dynamics (MD) simulations with explicit solvent and ions around RNA. From experiment and simulation results, we find excellent agreement in the number and distribution of excess monovalent and divalent ions around a short RNA duplex. Although similar agreement can be obtained from a continuum description of the solvent and mobile ions (by solving the Poisson-Boltzmann equation and accounting for finite ion size), the use of MD is easily extended to flexible RNA systems with thermal fluctuations. Therefore, we also model a short RNA pseudoknot and find good agreement between the MD results and the experimentally derived solution structures. Surprisingly, both deviate from crystal structure predictions. These favorable comparisons of experiment and simulations encourage work on RNA in all-atom dynamic models.


Journal of Chemical Physics | 2005

Computer simulations of the translocation and unfolding of a protein pulled mechanically through a pore

Lei Huang; Serdal Kirmizialtin; Dmitrii E. Makarov

Protein degradation by ATP-dependent proteases and protein import into the mitochondrial matrix involve the unfolding of proteins upon their passing through narrow constrictions. It has been hypothesized that the cellular machinery accomplishes protein unfolding by pulling mechanically at one end of the polypeptide chain. Here, we use Langevin dynamics simulations of a minimalist off-lattice model to examine this hypothesis and to study the unfolding of a protein domain pulled mechanically through a long narrow pore. We compute the potential of mean force (PMF) experienced by the domain as a function of its displacement along the pore and identify the unfolding intermediates corresponding to the local minima of the PMF. The observed unfolding mechanism is different from that found when the two termini are pulled apart, as in single-molecule mechanical unfolding experiments. It depends on the pore diameter, the magnitude of the pulling force, and on whether the force is applied at the N- or the C-terminus of the chain. Consequently, the translocation time exhibits a pulling force dependence that is more complex than a simple exponential function expected on the basis of simple phenomenological models of translocation.


Journal of Physical Chemistry A | 2011

Revisiting and computing reaction coordinates with Directional Milestoning.

Serdal Kirmizialtin; Ron Elber

The method of Directional Milestoning is revisited. We start from an exact and more general expression and state the conditions and validity of the memory-loss approximation. An algorithm to compute a reaction coordinate from Directional Milestoning data is presented. The reaction coordinate is calculated as a set of discrete jumps between Milestones that maximizes the flux between two stable states. As an application we consider a conformational transition in solvated adenosine. We compare a long molecular dynamic trajectory with Directional Milestoning and discuss the differences between the maximum flux path and minimum energy coordinates.


Journal of Physical Chemistry B | 2010

Computational Exploration of Mobile Ion Distributions around RNA Duplex

Serdal Kirmizialtin; Ron Elber

Atomically detailed distributions of ions around an A-form RNA are computed. Different mixtures of monovalent and divalent ions are considered explicitly. Studies of tightly bound and of diffusive (but bound) ions around 25 base pairs RNA are conducted in explicit solvent. Replica exchange simulations provide detailed equilibrium distributions with moderate computing resources (20 ns of simulation using 64 replicas). The simulations show distinct behavior of single and double charged cations. Binding of Mg(2+) ion includes tight binding to specific sites while Na(+) binds only diffusively. The tight binding of Mg(2+) is with a solvation shell while Na(+) can bind directly to RNA. Negative mobile ions can be found near the RNA but must be assisted by proximate and mobile cations. At distances larger than 16 A from the RNA center, a model of RNA as charged rod in a continuum of ionic solution provides quantitative description of the ion density (the same as in atomically detailed simulation). At shorter distances, the structure of RNA (and ions) has a significant impact on the pair correlation functions. Predicted binding sites of Mg(2+) at the RNA surface are in accord with structures from crystallography. Electric field relaxation is investigated. The relaxation due to solution rearrangements is completed in tens of picoseconds, while the contribution of RNA tumbling continues to a few nanoseconds.


Journal of Chemical Physics | 2004

Translocation of a β-hairpin-forming peptide through a cylindrical tunnel

Serdal Kirmizialtin; Venkat Ganesan; Dmitrii E. Makarov

We use Langevin dynamics simulations of a minimalist off-lattice model to study the translocation of a beta hairpin forming peptide through a tunnel that mimics the exit tunnel in a ribosome. We have computed the free energy of the peptide as a function of its position relative to the tunnel exit and also studied the properties of the conformational ensemble, when the peptides position is restricted at different points along the tunnel. Confining the peptide within a sufficiently wide tunnel stabilizes the folded state. The protein then remains folded as it moves towards the tunnel exit. However, when the diameter D of the tunnel is below a certain critical value D(c), confinement destabilizes the folded state and forces the peptide to assume an extended configuration. In this case, as the peptide progresses towards the tunnel exit and eventually leaves the tunnel, it goes through a series of compact, misfolded conformations and eventually folds when it gets close to the exit. The critical tunnel diameter D(c) is comparable to the width of ribosomal tunnels. Our results suggest that co-translational folding is probably not universal, but rather a protein-specific phenomenon.


Methods | 2016

The in vitro selection world

Kenan Jijakli; Basel Khraiwesh; Weiqi Fu; Liming Luo; Amnah Alzahmi; Joseph Koussa; Amphun Chaiboonchoe; Serdal Kirmizialtin; Laising Yen; Kourosh Salehi-Ashtiani

Through iterative cycles of selection, amplification, and mutagenesis, in vitro selection provides the ability to isolate molecules of desired properties and function from large pools (libraries) of random molecules with as many as 10(16) distinct species. This review, in recognition of a quarter of century of scientific discoveries made through in vitro selection, starts with a brief overview of the method and its history. It further covers recent developments in in vitro selection with a focus on tools that enhance the capabilities of in vitro selection and its expansion from being purely a nucleic acids selection to that of polypeptides and proteins. In addition, we cover how next generation sequencing and modern biological computational tools are being used to complement in vitro selection experiments. On the very least, sequencing and computational tools can translate the large volume of information associated with in vitro selection experiments to manageable, analyzable, and exploitable information. Finally, in vivo selection is briefly compared and contrasted to in vitro selection to highlight the unique capabilities of each method.


Journal of Physical Chemistry B | 2015

Enzyme Selectivity of HIV Reverse Transcriptase: Conformations, Ligands, and Free Energy Partition.

Serdal Kirmizialtin; Kenneth A. Johnson; Ron Elber

Atomically detailed simulations of HIV RT are performed to investigate the contributions of the conformational transition to the overall rate and specificity of enzyme catalysis. A number of different scenarios are considered within Milestoning theory to provide a more complete picture of the process of opening and closing the enzyme. We consider the open to closed transition in the absence of and with the correct and incorrect substrates. We also consider the free energy profile and the kinetics of the conformational change after the chemistry step in which a new base was added to the DNA, but the DNA was not yet displaced. We partition the free energy along the reaction coordinate and analyze the importance of different protein domains. Strikingly, significant influence on the free energy profile is detected for amino acids far from the active site. The overall long-range impact is about 50 percent of the total. We also illustrate that the overall rate is not necessarily determined by the highest free energy barrier along the reaction path (with respect to the free enzyme and substrate) and that the specificity is not necessarily determined by the same reaction step that determines the rate.


Biopolymers | 2013

Polyelectrolyte properties of single stranded DNA measured using SAXS and single-molecule FRET: Beyond the wormlike chain model

Steve P. Meisburger; Julie L. Sutton; Huimin Chen; Suzette A. Pabit; Serdal Kirmizialtin; Ron Elber; Lois Pollack

Nucleic acids are highly charged polyelectrolytes that interact strongly with salt ions. Rigid, base-paired regions are successfully described with wormlike chain models, but nonbase-paired single stranded regions have fundamentally different polymer properties because of their greater flexibility. Recently, attention has turned to single stranded nucleic acids due to the growing recognition of their biological importance, as well as the availability of sophisticated experimental techniques sensitive to the conformation of individual molecules. We investigate polyelectrolyte properties of poly(dT), an important and widely studied model system for flexible single stranded nucleic acids, in physiologically important mixed mono- and divalent salt. We report measurements of the form factor and interparticle interactions using SAXS, end-to-end distances using smFRET, and number of excess ions using ASAXS. We present a coarse-grained model that accounts for flexibility, excluded volume, and electrostatic interactions in these systems. Predictions of the model are validated against experiment. We also discuss the state of all-atom, explicit solvent molecular dynamics simulations of poly(dT), the next step in understanding the complexities of ion interactions with these highly charged and flexible polymers.


Methods in Enzymology | 2015

Chapter Sixteen - Using Molecular Simulation to Model High-Resolution Cryo-EM Reconstructions

Serdal Kirmizialtin; Justus Loerke; Elmar Behrmann; Christian M. T. Spahn; Karissa Y. Sanbonmatsu

An explosion of new data from high-resolution cryo-electron microscopy (cryo-EM) studies has produced a large number of data sets for many species of ribosomes in various functional states over the past few years. While many methods exist to produce structural models for lower resolution cryo-EM reconstructions, high-resolution reconstructions are often modeled using crystallographic techniques and extensive manual intervention. Here, we present an automated fitting technique for high-resolution cryo-EM data sets that produces all-atom models highly consistent with the EM density. Using a molecular dynamics approach, atomic positions are optimized with a potential that includes the cross-correlation coefficient between the structural model and the cryo-EM electron density, as well as a biasing potential preserving the stereochemistry and secondary structure of the biomolecule. Specifically, we use a hybrid structure-based/ab initio molecular dynamics potential to extend molecular dynamics fitting. In addition, we find that simulated annealing integration, as opposed to straightforward molecular dynamics integration, significantly improves performance. We obtain atomistic models of the human ribosome consistent with high-resolution cryo-EM reconstructions of the human ribosome. Automated methods such as these have the potential to produce atomistic models for a large number of ribosome complexes simultaneously that can be subsequently refined manually.

Collaboration


Dive into the Serdal Kirmizialtin's collaboration.

Top Co-Authors

Avatar

Ron Elber

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Dmitrii E. Makarov

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Karissa Y. Sanbonmatsu

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kenneth A. Johnson

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramesh Jagannathan

New York University Abu Dhabi

View shared research outputs
Top Co-Authors

Avatar

Sudhir Kumar Sharma

New York University Abu Dhabi

View shared research outputs
Top Co-Authors

Avatar

Lei Huang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Ali Trabolsi

New York University Abu Dhabi

View shared research outputs
Top Co-Authors

Avatar

Dinesh Shetty

New York University Abu Dhabi

View shared research outputs
Researchain Logo
Decentralizing Knowledge