Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Serge Brouyère is active.

Publication


Featured researches published by Serge Brouyère.


Agronomy for Sustainable Development | 2009

Mobility, turnover and storage of pollutants in soils, sediments and waters : achievements and results of the EU project AquaTerra. A review

Johannes A. C. Barth; Peter Grathwohl; Hayley J. Fowler; Alberto Bellin; Martin H. Gerzabek; Georg J. Lair; D. Barceló; Mira Petrovic; Andres Navarro; Ph. Négrel; E. Petelet-Giraud; D. Darmendrail; H.H.M. Rijnaarts; A. Langenhoff; J. de Weert; Adriaan Slob; B.M. van der Zaan; J. Gerritse; E. Frank; Alexis Gutierrez; Ruben Kretzschmar; Tilman Gocht; Dietmar Steidle; F. Garrido; Kevin C. Jones; Sandra N. Meijer; Claudia Moeckel; A. Marsman; G. Klaver; T. Vogel

AquaTerra is one of the first environmental projects within the 6th Framework program by the European Commission. It began in June 2004 with a multidisciplinary team of 45 partner organizations from 13 EU countries, Switzerland, Serbia, Romania and Montenegro. Results from sampling and modeling in 4 large river basins (Ebro, Danube, Elbe and Meuse) and one catchment of the Brévilles Spring in France led to new evaluations of diffuse and hotspot input of persistent organic and metal pollutants including dynamics of pesticides and polycyclic aromatic hydrocarbons, as well as metal turnover and accumulation. While degradation of selected organic compounds could be demonstrated under controlled conditions in the laboratory, turnover of most persistent pollutants in the field seems to range from decades to centuries. First investigations of long-term cumulative and degradation effects, particularly in the context of climate change, have shown that it is also necessary to consider the predictions of more than one climate model when trying to assess future impacts. This is largely controlled by uncertainties in climate model responses. It is becoming evident, however, that changes to the climate will have important impacts on the diffusion and degradation of pollutants in space and time that are just at the start of their exploration.


Journal of Environmental Monitoring | 2009

Comparison of methods for the detection and extrapolation of trends in groundwater quality.

Ate Visser; Igor G. Dubus; Hans Peter Broers; Serge Brouyère; Marek Korcz; Philippe Orban; Pascal Goderniaux; Jordi Batlle-Aguilar; Nicolas Surdyk; Nadia Amraoui; Helene Job; Jean-Louis Pinault; Marc F. P. Bierkens

Land use changes and the intensification of agriculture since the 1950s have resulted in a deterioration of groundwater quality in many European countries. For the protection of groundwater quality, it is necessary to (1) assess the current groundwater quality status, (2) detect changes or trends in groundwater quality, (3) assess the threat of deterioration and (4) predict future changes in groundwater quality. A variety of approaches and tools can be used to detect and extrapolate trends in groundwater quality, ranging from simple linear statistics to distributed 3D groundwater contaminant transport models. In this paper we report on a comparison of four methods for the detection and extrapolation of trends in groundwater quality: (1) statistical methods, (2) groundwater dating, (3) transfer functions, and (4) deterministic modeling. Our work shows that the selection of the method should firstly be made on the basis of the specific goals of the study (only trend detection or also extrapolation), the system under study, and the available resources. For trend detection in groundwater quality in relation to diffuse agricultural contamination, a very important aspect is whether the nature of the monitoring network and groundwater body allows the collection of samples with a distinct age or produces samples with a mixture of young and old groundwater. We conclude that there is no single optimal method to detect trends in groundwater quality across widely differing catchments.


Journal of Contaminant Hydrology | 2014

Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers

Samuel Wildemeersch; Pierre Jamin; Philippe Orban; Thomas Hermans; Maria Klepikova; Frédéric Nguyen; Serge Brouyère; Alain Dassargues

Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modeling.


Science of The Total Environment | 2018

Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium)

Alberto Borges; François Darchambeau; Thibault Lambert; Steven Bouillon; C Morana; Serge Brouyère; Vivien Hakoun; Anna Jurado; H.-C. Tseng; Jean-Pierre Descy; Fleur Roland

We report a data-set of CO2, CH4, and N2O concentrations in the surface waters of the Meuse river network in Belgium, obtained during four surveys covering 50 stations (summer 2013 and late winter 2013, 2014 and 2015), from yearly cycles in four rivers of variable size and catchment land cover, and from 111 groundwater samples. Surface waters of the Meuse river network were over-saturated in CO2, CH4, N2O with respect to atmospheric equilibrium, acting as sources of these greenhouse gases to the atmosphere, although the dissolved gases also showed marked seasonal and spatial variations. Seasonal variations were related to changes in freshwater discharge following the hydrological cycle, with highest concentrations of CO2, CH4, N2O during low water owing to a longer water residence time and lower currents (i.e. lower gas transfer velocities), both contributing to the accumulation of gases in the water column, combined with higher temperatures favourable to microbial processes. Inter-annual differences of discharge also led to differences in CH4 and N2O that were higher in years with prolonged low water periods. Spatial variations were mostly due to differences in land cover over the catchments, with systems dominated by agriculture (croplands and pastures) having higher CO2, CH4, N2O levels than forested systems. This seemed to be related to higher levels of dissolved and particulate organic matter, as well as dissolved inorganic nitrogen in agriculture dominated systems compared to forested ones. Groundwater had very low CH4 concentrations in the shallow and unconfined aquifers (mostly fractured limestones) of the Meuse basin, hence, should not contribute significantly to the high CH4 levels in surface riverine waters. Owing to high dissolved concentrations, groundwater could potentially transfer important quantities of CO2 and N2O to surface waters of the Meuse basin, although this hypothesis remains to be tested.


Science of The Total Environment | 2017

Dynamics and emissions of N2O in groundwater: A review

Anna Jurado; Alberto Borges; Serge Brouyère

This work reviews the concentrations, the dynamics and the emissions of nitrous oxide (N2O) in groundwater. N2O is an important greenhouse gas (GHG) and the primary stratospheric ozone depleting substance. The major anthropogenic source that contributes to N2O generation in aquifers is agriculture because the use of fertilizers has led to the widespread groundwater contamination by inorganic nitrogen (N) (mainly nitrate, NO3-). Once in the aquifer, this inorganic N is transported and affected by several geochemical processes that produce and consume N2O. An inventory of dissolved N2O concentrations is presented and the highest concentration is about 18.000 times higher than air-equilibrated water (up to 4004μg N L-1). The accumulation of N2O in groundwater is mainly due to denitrification and to lesser extent to nitrification. Their occurrence depend on the geochemical (e.g., NO3-, dissolved oxygen, ammonium and dissolved organic carbon) as well as hydrogeological parameters (e.g., groundwater table fluctuations and aquifer permeability). The coupled understanding of both parameters is necessary to gain insight on the dynamics and the emissions of N2O in groundwater. Overall, groundwater indirect N2O emissions seem to be a minor component of N2O emissions to the atmosphere. Further research might be devoted to evaluate the groundwater contribution to the indirect emissions of N2O because this will help to better constraint the N2O global budget and, consequently, the N budget.


Journal of Contaminant Hydrology | 2012

A regional flux-based risk assessment approach for multiple contaminated sites on groundwater bodies.

Pierre Jamin; B. Chisala; Ph. Orban; Ileana-Cristina Popescu; Cécile Hérivaux; Alain Dassargues; Serge Brouyère

In the context of the Water Framework Directive (EP and CEU, 2000), management plans have to be set up to monitor and to maintain water quality in groundwater bodies in the EU. In heavily industrialized and urbanized areas, the cumulative effect of multiple contaminant sources is likely and has to be evaluated. In order to propose adequate measures, the calculated risk should be based on criteria reflecting the risk of groundwater quality deterioration, in a cumulative manner and at the scale of the entire groundwater body. An integrated GIS- and flux-based risk assessment approach for groundwater bodies is described, with a regional scale indicator for evaluating the quality status of the groundwater body. It is based on the SEQ-ESO currently used in the Walloon Region of Belgium which defines, for different water uses and for a detailed list of groundwater contaminants, a set of threshold values reflecting the levels of water quality and degradation with respect to each contaminant. The methodology is illustrated with first results at a regional scale on a groundwater body-scale application to a contaminated alluvial aquifer which has been classified to be at risk of not reaching a good quality status by 2015. These first results show that contaminants resulting from old industrial activities in that area are likely to contribute significantly to the degradation of groundwater quality. However, further investigations are required on the evaluation of the actual polluting pressures before any definitive conclusion be established.


Ground Water | 2014

Physically Based Groundwater Vulnerability Assessment Using Sensitivity Analysis Methods

Jean Beaujean; Jean-Michel Lemieux; Alain Dassargues; René Therrien; Serge Brouyère

A general physically based method is presented to assess the vulnerability of groundwater to external pressures by numerical simulation of groundwater flow. The concept of groundwater vulnerability assessment considered here is based on the calculation of sensitivity coefficients for a user-defined groundwater state for which we propose several physically based indicators. Two sensitivity analysis methods are presented: the sensitivity equation method and the adjoint operator method. We show how careful selection of a method can significantly minimize the computational effort. An illustration of the general methodology is presented for the Herten aquifer analog (Germany). This application to a simple, yet insightful, case demonstrates the potential use of this general and physically based vulnerability assessment method to complex aquifers.


Journal of Contaminant Hydrology | 2015

Contribution of the Finite Volume Point Dilution Method for measurement of groundwater fluxes in a fractured aquifer

Pierre Jamin; Pascal Goderniaux; Olivier Bour; Tanguy Le Borgne; Andreas Englert; Laurent Longuevergne; Serge Brouyère

Measurement of groundwater fluxes is the basis of all hydrogeological study, from hydraulic characterization to the most advanced reactive transport modeling. Usual groundwater flux estimation with Darcys law may lead to cumulated errors on spatial variability, especially in fractured aquifers where local direct measurement of groundwater fluxes becomes necessary. In the present study, both classical point dilution method (PDM) and finite volume point dilution method (FVPDM) are compared on the fractured crystalline aquifer of Ploemeur, France. The manipulation includes the first use of the FVPDM in a fractured aquifer using a double packer. This configuration limits the vertical extent of the tested zone to target a precise fracture zone of the aquifer. The result of this experiment is a continuous monitoring of groundwater fluxes that lasted for more than 4 days. Measurements of groundwater flow rate in the fracture (Q(t)) by PDM provide good estimates only if the mixing volume (V(w)) (volume of water in which the tracer is mixed) is precisely known. Conversely, the FVPDM allows for an independent estimation of V(w) and Q(t), leading to better precision in case of complex experimental setup such as the one used. The precision of a PDM does not rely on the duration of the experiment while a FVPDM may require long experimental duration to guarantees a good precision. Classical PDM should then be used for rapid estimation of groundwater flux using simple experimental setup. On the other hand, the FVPDM is a more precise method that has a great potential for development but may require longer duration experiment to achieve a good precision if the groundwater fluxes investigated are low and/or the mixing volume is large.


Ground Water | 2014

Benzene dynamics and biodegradation in alluvial aquifers affected by river fluctuations

Jordi Batlle-Aguilar; Barbara Morasch; Daniel Hunkeler; Serge Brouyère

The spatial distribution and temporal dynamics of a benzene plume in an alluvial aquifer strongly affected by river fluctuations was studied. Benzene concentrations, aquifer geochemistry datasets, past river morphology, and benzene degradation rates estimated in situ using stable carbon isotope enrichment were analyzed in concert with aquifer heterogeneity and river fluctuations. Geochemistry data demonstrated that benzene biodegradation was on-going under sulfate reducing conditions. Long-term monitoring of hydraulic heads and characterization of the alluvial aquifer formed the basis of a detailed modeled image of aquifer heterogeneity. Hydraulic conductivity was found to strongly correlate with benzene degradation, indicating that low hydraulic conductivity areas are capable of sustaining benzene anaerobic biodegradation provided the electron acceptor (SO4 (2-) ) does not become rate limiting. Modeling results demonstrated that the groundwater flux direction is reversed on annual basis when the river level rises up to 2 m, thereby forcing the infiltration of oxygenated surface water into the aquifer. The mobilization state of metal trace elements such as Zn, Cd, and As present in the aquifer predominantly depended on the strong potential gradient within the plume. However, infiltration of oxygenated water was found to trigger a change from strongly reducing to oxic conditions near the river, causing mobilization of previously immobile metal species and vice versa. MNA appears to be an appropriate remediation strategy in this type of dynamic environment provided that aquifer characterization and targeted monitoring of redox conditions are adequate and electron acceptors remain available until concentrations of toxic compounds reduce to acceptable levels.


Science of The Total Environment | 2017

Isotopic composition of nitrogen species in groundwater under agricultural areas: A review

Olha Nikolenko; Anna Jurado Elices; Alberto Borges; Kay Knöller; Serge Brouyère

This work reviews applications of stable isotope analysis to the studies of transport and transformation of N species in groundwater under agricultural areas. It summarizes evidence regarding factors affecting the isotopic composition of NO3-, NH4+ and N2O in subsurface, and discusses the use of 11B, 18O, 13C, 34S, 87Sr/86Sr isotopes to support the analysis of δ15N values. The isotopic composition of NO3-, NH4+ and N2O varies depending on their sources and dynamics of N cycle processes. The reported δ15N-NO3- values for sources of NO3- are: soil organic N - +3‰-+8‰, mineral fertilizers - -8‰-+7‰; manure/household waste - +5‰ to +35‰. For NH4+ sources, the isotopic signature ranges are: organic matter - +2.4-+4.1‰, rainwater - -13.4-+2.3‰, mineral fertilizers - -7.4-+5.1‰, household waste - +5-+9‰; animal manure - +8-+11‰. For N2O, isotopic composition depends on isotopic signatures of substrate pools and reaction rates. δ15N values of NO3- are influenced by fractionation effects occurring during denitrification (ɛ=5-40‰), nitrification (ɛ=5-35‰) and DNRA (ɛ not reported). The isotopic signature of NH4+ is also affected by nitrification and DNRA as well as mineralization (ɛ=1‰), sorption (ɛ=1-8‰), anammox (ɛ=4.3-7.4‰) and volatilization (ɛ=25‰). As for the N2O, production of N2O leads to its depletion in 15N, whereas consumption - to enrichment in 15N. The magnitude of fractionation effects occurring during the considered processes depends on temperature, pH, DO, C/NO3- ratio, size of the substrate pool, availability of electron donors, water content in subsoil, residence time, land use, hydrogeology. While previous studies have accumulated rich data on isotopic composition of NO3- in groundwater, evidence remains scarce in the cases of NH4+ and N2O. Further research is required to consider variability of δ15N-NH4+ and δ15N-N2O in groundwater across agricultural ecosystems.

Collaboration


Dive into the Serge Brouyère's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge