Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Serge G. Lemay is active.

Publication


Featured researches published by Serge G. Lemay.


Nature | 2004

Electrical generation and absorption of phonons in carbon nanotubes

Brian J. LeRoy; Serge G. Lemay; J. Kong; Cees Dekker

The interplay between discrete vibrational and electronic degrees of freedom directly influences the chemical and physical properties of molecular systems. This coupling is typically studied through optical methods such as fluorescence, absorption and Raman spectroscopy. Molecular electronic devices provide new opportunities for exploring vibration–electronic interactions at the single molecule level. For example, electrons injected from a scanning tunnelling microscope tip into a metal can excite vibrational excitations of a molecule situated in the gap between tip and metal. Here we show how current directly injected into a freely suspended individual single-wall carbon nanotube can be used to excite, detect and control a specific vibrational mode of the molecule. Electrons tunnelling inelastically into the nanotube cause a non-equilibrium occupation of the radial breathing mode, leading to both stimulated emission and absorption of phonons by successive electron tunnelling events. We exploit this effect to measure a phonon lifetime of the order of 10 ns, corresponding to a quality factor of well over 10,000 for this nanomechanical oscillator.


Analytical Chemistry | 2008

Nanofluidic Redox Cycling Amplification for the Selective Detection of Catechol

Bernhard Wolfrum; and Marcel Zevenbergen; Serge G. Lemay

We have developed a chip-based nanofluidic device to amplify the electrochemical signal of catechols by orders of magnitude. The amplification is based on rapid redox cycling between plane parallel electrodes inside a nanochannel. We show that it is possible to monitor the signal of only a few hundred molecules residing in the active area of the nanofluidic sensor. Furthermore, due to the nanochannel design, the sensor is immune to interference by molecules undergoing irreversible redox reactions. We demonstrate the selectivity of the device by detecting catechol in the presence of ascorbic acid, whose oxidized form is only stable for a short time. The interference of ascorbic acid is usually a challenge in the detection of catecholamines in biological samples.


Journal of the American Chemical Society | 2010

Influence of Electrolyte Composition on Liquid-Gated Carbon Nanotube and Graphene Transistors

Iddo Heller; Sohail Chatoor; Jaan Männik; Marcel A. G. Zevenbergen; Cees Dekker; Serge G. Lemay

Field-effect transistors based on single-walled carbon nanotubes (SWNTs) and graphene can function as highly sensitive nanoscale (bio)sensors in solution. Here, we compare experimentally how SWNT and graphene transistors respond to changes in the composition of the aqueous electrolyte in which they are immersed. We show that the conductance of SWNTs and graphene is strongly affected by changes in the ionic strength, the pH, and the type of ions present, in a manner that can be qualitatively different for graphene and SWNT devices. We show that this sensitivity to electrolyte composition results from a combination of different mechanisms including electrostatic gating, Schottky-barrier modifications, and changes in gate capacitance. Interestingly, we find strong evidence that the sensor response to changes in electrolyte composition is affected by a high density of ionizable groups on both the underlying substrate and the carbon surfaces. We present a model based on the (regulated) surface charge associated with these ionizable groups that explains the majority of our data. Our findings have significant implications for interpreting and optimizing sensing experiments with nanocarbon transistors. This is particularly true for complex biological samples such as cell extracts, growth media, or bodily fluids, for which the complete composition of the solution needs to be considered.


Nano Letters | 2011

Stochastic Sensing of Single Molecules in a Nanofluidic Electrochemical Device

Marcel A. G. Zevenbergen; Pradyumna S. Singh; Edgar D. Goluch; Bernhard Wolfrum; Serge G. Lemay

We report the electrochemical detection of individual redox-active molecules as they freely diffuse in solution. Our approach is based on microfabricated nanofluidic devices, wherein repeated reduction and oxidation at two closely spaced electrodes yields a giant sensitivity gain. Single molecules entering and leaving the cavity are revealed as anticorrelated steps in the faradaic current measured simultaneously through the two electrodes. Cross-correlation analysis provides unequivocal evidence of single molecule sensitivity. We further find agreement with numerical simulations of the stochastic signals and analytical results for the distribution of residence times. This new detection capability can serve as a powerful alternative when fluorescent labeling is invasive or impossible. It further enables new fundamental (bio)electrochemical experiments, for example, localized detection of neurotransmitter release, studies of enzymes with redox-active products, and single-cell electrochemical assays. Finally, our lithography-based approach renders the devices suitable for integration in highly parallelized, all-electrical analysis systems.


Journal of the American Chemical Society | 2009

Fast electron-transfer kinetics probed in nanofluidic channels.

Marcel A. G. Zevenbergen; Bernhard Wolfrum; Edgar D. Goluch; Pradyumna S. Singh; Serge G. Lemay

We demonstrate that a 50 nm high solution-filled cavity bounded by two parallel electrodes in which electrochemically active molecules undergo rapid redox cycling can be used to determine very fast electron-transfer kinetics. We illustrate this capability by showing that the heterogeneous rate constant of Fc(MeOH)(2) sensitively depends on the type and concentration of the supporting electrolyte. These solid-state devices are mechanically robust and stable over time and therefore have the potential to become a widespread and versatile tool for electrochemical measurements.


Applied Physics Letters | 2007

Carbon nanotube biosensors: The critical role of the reference electrode

Ethan D. Minot; Anne M. Janssens; Iddo Heller; Hendrik A. Heering; Cees Dekker; Serge G. Lemay

Carbon nanotube transistors show tremendous potential for electronic detection of biomolecules in solution. However, the nature and magnitude of the sensing signal upon molecular adsorption have so far remained controversial. Here, the authors show that the choice of the reference electrode is critical and resolves much of the previous controversy. The authors eliminate artifacts related to the reference electrode by using a well-defined reference electrode to accurately control the solution potential. Upon addition of bovine serum albumin proteins, the authors measure a transistor threshold shift of ?15?mV which can be unambiguously attributed to the adsorption of biomolecules in the vicinity of the nanotube.


ACS Nano | 2008

Toward single-enzyme molecule electrochemistry: [NiFe]-hydrogenase protein film voltammetry at nanoelectrodes

F.J.M. Hoeben; F.S. Meijer; Cees Dekker; S.P.J. Albracht; Hendrik A. Heering; Serge G. Lemay

We have scaled down electrochemical assays of redox-active enzymes enabling us to study small numbers of molecules. Our approach is based on lithographically fabricated Au nanoelectrodes with dimensions down to ca. 70 x 70 nm(2). We first present a detailed characterization of the electrodes using a combination of scanning electron microscopy, cyclic voltammetry, and finite-element modeling. We then demonstrate the viability of the approach by focusing on the highly active [NiFe]-hydrogenase from Allochromatium vinosum immobilized on polymyxin-pretreated Au. Using this system, we successfully demonstrate a distinct catalytic response from less than 50 enzyme molecules. These results strongly suggest the feasibility of using bioelectrochemistry as a new tool for studying redox enzymes at the single-molecule level.


Analytical Chemistry | 2011

Lithography-based Nanoelectrochemistry

Liza Rassaei; Pradyumna S. Singh; Serge G. Lemay

Lithographically fabricated nanostructures appear in an increasingly wide range of scientific fields, and electroanalytical chemistry is no exception. This article introduces lithography methods and provides an overview of the new capabilities and electrochemical phenomena that can emerge in nanostructures.


Analytical Chemistry | 2010

Nanocavity redox cycling sensors for the detection of dopamine fluctuations in microfluidic gradients.

Enno Kätelhön; Boris Hofmann; Serge G. Lemay; Marcel A. G. Zevenbergen; Andreas Offenhäusser; Bernhard Wolfrum

Electrochemical mapping of neurotransmitter concentrations on a chip promises to be an interesting technique for investigating synaptic release in cellular networks. In here, we present a novel chip-based device for the detection of neurotransmitter fluctuations in real-time. The chip features an array of plane-parallel nanocavity sensors, which strongly amplify the electrochemical signal. This amplification is based on efficient redox cycling via confined diffusion between two electrodes inside the nanocavity sensors. We demonstrate the capability of resolving concentration fluctuations of redox-active species in a microfluidic mixing gradient on the chip. The results are explained by a simulated concentration profile that was calculated on the basis of the coupled Navier-Stokes and convection-diffusion equations using a finite element approach.


Accounts of Chemical Research | 2013

Single-Molecule Electrochemistry: Present Status and Outlook

Serge G. Lemay; Shuo Kang; Pradyumna S. Singh

The development of methods for detecting and manipulating matter at the level of individual macromolecules represents one of the key scientific advancements of recent decades. These techniques allow us to get information that is largely unobtainable otherwise, such as the magnitudes of microscopic forces, mechanistic details of catalytic processes, macromolecular population heterogeneities, and time-resolved, step-by-step observation of complex kinetics. Methods based on optical, mechanical, and ionic-conductance signal transduction are particularly developed. However, there is scope for new approaches that can broaden the range of molecular systems that we can study at this ultimate level of sensitivity and for developing new analytical methods relying on single-molecule detection. Approaches based on purely electrical detection are particularly appealing in the latter context, since they can be easily combined with microelectronics or fluidic devices on a single microchip to create large parallel assays at relatively low cost. A form of electrical signal transduction that has so far remained relatively underdeveloped at the single-molecule level is the direct detection of the charge transferred in electrochemical processes. The reason for this is simple: only a few electrons are transferred per molecule in a typical faradaic reaction, a heterogeneous charge-transfer reaction that occurs at the electrodes surface. Detecting this tiny amount of charge is impossible using conventional electrochemical instrumentation. A workaround is to use redox cycling, in which the charge transferred is amplified by repeatedly reducing and oxidizing analyte molecules as they randomly diffuse between a pair of electrodes. For this process to be sufficiently efficient, the electrodes must be positioned within less than 100 nm of each other, and the analyte must remain between the electrodes long enough for the measurement to take place. Early efforts focused on tip-based nanoelectrodes, descended from scanning electrochemical microscopy, to create suitable geometries. However, it has been challenging to apply these technologies broadly. In this Account, we describe our alternative approach based on electrodes embedded in microfabricated nanochannels, so-called nanogap transducers. Microfabrication techniques grant a high level of reproducibility and control over the geometry of the devices, permitting systematic development and characterization. We have employed these devices to demonstrate single-molecule sensitivity. This method shows good agreement with theoretical analysis based on the Brownian motion of discrete molecules, but only once the finite time resolution of the experimental apparatus is taken into account. These results highlight both the random nature of single-molecule signals and the complications that it can introduce in data interpretation. We conclude this Account with a discussion on how scientists can overcome this limitation in the future to create a new experimental platform that can be generally useful for both fundamental studies and analytical applications.

Collaboration


Dive into the Serge G. Lemay's collaboration.

Top Co-Authors

Avatar

Cees Dekker

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Iddo Heller

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Sarkar

MESA+ Institute for Nanotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge