Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Serge Garbay is active.

Publication


Featured researches published by Serge Garbay.


The EMBO Journal | 2004

A transcriptional network in polycystic kidney disease

Lionel Gresh; Evelyne Fischer; Andreas Reimann; Myriam Tanguy; Serge Garbay; Xinli Shao; Thomas Hiesberger; Laurence Fiette; Peter Igarashi; Moshe Yaniv; Marco Pontoglio

Mutations in cystic kidney disease genes represent a major genetic cause of end‐stage renal disease. However, the molecular cascades controlling the expression of these genes are still poorly understood. Hepatocyte Nuclear Factor 1β (HNF1β) is a homeoprotein predominantly expressed in renal, pancreatic and hepatic epithelia. We report here that mice with renal‐specific inactivation of HNF1β develop polycystic kidney disease. We show that renal cyst formation is accompanied by a drastic defect in the transcriptional activation of Umod, Pkhd1 and Pkd2 genes, whose mutations are responsible for distinct cystic kidney syndromes. In vivo chromatin immunoprecipitation experiments demonstrated that HNF1β binds to several DNA elements in murine Umod, Pkhd1, Pkd2 and Tg737/Polaris genomic sequences. Our results uncover a direct transcriptional hierarchy between HNF1β and cystic disease genes. Interestingly, most of the identified HNF1β target gene products colocalize to the primary cilium, a crucial organelle that plays an important role in controlling the proliferation of tubular cells. This may explain the increased proliferation of cystic cells in MODY5 patients carrying autosomal dominant mutations in HNF1β.


Oncogene | 1999

Papillomavirus E2 induces p53-independent apoptosis in HeLa cells

Sylvain Goyat; Serge Garbay; Moshe Yaniv; Françoise Thierry

We have previously shown that expression of the papillomavirus E2 protein in HeLa cells induces p53 accumulation and causes both cell cycle arrest and apoptosis. In contrast to growth arrest, onset of apoptosis was not correlated with an increase of p53 transcriptional activity. In the present study, we conducted biochemical and genetic experiments in order to determine whether E2-induced apoptosis was independent of p53 induction. We showed that E2 did not alter the transcription of Bax, a known p53-activated cell death inducer. The time course of apoptotic cell death preceded p53 induction by several hours. Overexpression of the HPV18 E6 oncogene prevented E2-mediated p53 accumulation, but did not alter the rate of cell death. Finally, point mutants of the HPV18 E2 transactivation domain induced apoptosis, although they were unable to induce high p53 accumulation or cell cycle arrest. In addition, the results obtained with these mutants indicated that both transcriptional activation and replication functions of E2 were dispensable for the induction of cell death. These observations show that E2-induced apoptosis is an early event, independent of p53 accumulation and unrelated to downstream p53-dependent transcriptional events.


The EMBO Journal | 2005

The SWI/SNF chromatin-remodeling complex subunit SNF5 is essential for hepatocyte differentiation.

Lionel Gresh; Brigitte Bourachot; Andreas Reimann; Bruno Guigas; Laurence Fiette; Serge Garbay; Christian Muchardt; Louis Hue; Marco Pontoglio; Moshe Yaniv; Agnès Klochendler-Yeivin

Regulation of gene expression underlies cell differentiation and organogenesis. Both transcription factors and chromatin modifiers are crucial for this process. To study the role of the ATP‐dependent SWI/SNF chromatin‐remodeling complex in cell differentiation, we inactivated the gene encoding the core complex subunit SNF5/INI1 in the developing liver. Hepatic SNF5 deletion caused neonatal death due to severe hypoglycemia; mutant animals fail to store glycogen and have impaired energetic metabolism. The formation of a hepatic epithelium is also affected in SNF5‐deficient livers. Transcriptome analyses showed that SNF5 inactivation is accompanied by defective transcriptional activation of 70% of the genes that are normally upregulated during liver development. These include genes involved in glycogen synthesis, gluconeogenesis and cell–cell adhesion. A fraction of hepatic developmentally activated genes were normally expressed, suggesting that cell differentiation was not completely blocked. Moreover, SNF5‐deleted cells showed increased proliferation and we identified several misexpressed genes that may contribute to cell cycle deregulation in these cells. Our results emphasize the role of chromatin remodeling in the activation of cell‐type‐specific genetic programs and driving cell differentiation.


Cancer Research | 2005

A Genomic Map of p53 Binding Sites Identifies Novel p53 Targets Involved in an Apoptotic Network

Chaouki Miled; Marco Pontoglio; Serge Garbay; Moshe Yaniv; Jonathan B. Weitzman

The transcriptional activity of the p53 protein is central to its role in tumor suppression. Identification of the complete repertoire of p53-regulated genes is critical for dissecting the complexity of the p53 network. Although several different approaches have been used to characterize the p53 genetic program, we still lack a comprehensive molecular understanding of how p53 prevents cancer. Using a computational approach, we generated a genome-wide map of p53 binding sites (p53BS) to identify novel p53 target genes. We show that the presence of nearby p53BS can identify new proapoptotic members of the Bcl2 family. We show that p53 binds to p53BS identified in the BCL-G/BCL2L14 gene and that induction of this gene contributes to p53-mediated apoptosis. We found that p53 activates the COL18A1 gene encoding the precursor for the antiangiogenic factor endostatin. We also show that p53 up-regulates the MAP4K4 gene and activates the c-Jun NH2-terminal kinase (JNK) pathway to drive apoptosis. Thus, unbiased mapping of the genomic landscape of p53BS provides a systematic and complementary approach to identify novel factors and connections in the p53 genetic network. Our study illustrates how systematic genomic approaches can identify binding sites that are functionally relevant for a p53 transcriptional program. The genetic link among p53, antiangiogenic factors, and the JNK signaling pathway adds new dimensions to understanding p53 function in highly connected genetic networks.


Development | 2010

Hepatocyte nuclear factor 1α and β control terminal differentiation and cell fate commitment in the gut epithelium

Anna D'Angelo; Olivier Bluteau; Miguel A. Garcia-Gonzalez; Lionel Gresh; Antonia Doyen; Serge Garbay; Sylvie Robine; Marco Pontoglio

The intestinal epithelium is a complex system characterized by massive and continuous cell renewal and differentiation. In this context, cell-type-specific transcription factors are thought to play a crucial role by modulating specific transcription networks and signalling pathways. Hnf1α and β are closely related atypical homeoprotein transcription factors expressed in several epithelia, including the gut. With the use of a conditional inactivation system, we generated mice in which Hnf1b is specifically inactivated in the intestinal epithelium on a wild-type or Hnf1a−/− genetic background. Whereas the inactivation of Hnf1a or Hnf1b alone did not lead to any major intestinal dysfunction, the concomitant inactivation of both genes resulted in a lethal phenotype. Double-mutant animals had defective differentiation and cell fate commitment. The expression levels of markers of all the differentiated cell types, both enterocytes and secretory cells, were affected. In addition, the number of goblet cells was increased, whereas mature Paneth cells were missing. At the molecular level, we show that Hnf1α and β act upstream of the Notch pathway controlling directly the expression of two crucial components: Jag1 and Atoh1. We demonstrate that the double-mutant mice present with a defect in intestinal water absorption and that Hnf1α and β directly control the expression of Slc26a3, a gene whose mutations are associated with chloride diarrhoea in human patients. Our study identifies new direct target genes of the Hnf1 transcription factors and shows that they play crucial roles in both defining cell fate and controlling terminal functions in the gut epithelium.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genome-wide discovery of functional transcription factor binding sites by comparative genomics: the case of Stat3.

Francesco Vallania; Davide Schiavone; Sarah Dewilde; Emanuela Pupo; Serge Garbay; Raffaele Calogero; Marco Pontoglio; Paolo Provero; Valeria Poli

The identification of direct targets of transcription factors is a key problem in the study of gene regulatory networks. However, the use of high throughput experimental methods, such as ChIP-chip and ChIP-sequencing, is limited by their high cost and strong dependence on cellular type and context. We developed a computational method for the genome-wide identification of functional transcription factor binding sites based on positional weight matrices, comparative genomics, and gene expression profiling. The method was applied to Stat3, a transcription factor playing crucial roles in inflammation, immunity and oncogenesis, and able to induce distinct subsets of target genes in different cell types or conditions. A newly generated positional weight matrix enabled us to assign affinity scores of high specificity, as measured by EMSA competition assays. Phylogenetic conservation with 7 vertebrate species was used to select the binding sites most likely to be functional. Validation was carried out on predicted sites within genes identified as differentially expressed in the presence or absence of Stat3 by microarray analysis. Twelve of the fourteen sites tested were bound by Stat3 in vivo, as assessed by Chromatin Immunoprecipitation, allowing us to identify 9 Stat3 transcriptional targets. Given its high validation rate, and the availability of large transcription factor-dependent gene expression datasets obtained under diverse experimental conditions, our approach appears to be a valid alternative to high-throughput experimental assays for the discovery of novel direct targets of transcription factors.


Development | 2013

Hepatocyte nuclear factor 1β controls nephron tubular development.

Filippo Massa; Serge Garbay; Raymonde Bouvier; Yoshinobu Sugitani; Tetsuo Noda; Marie-Claire Gubler; Laurence Heidet; Marco Pontoglio; Evelyne Fischer

Nephron morphogenesis is a complex process that generates blood-filtration units (glomeruli) connected to extremely long and patterned tubular structures. Hepatocyte nuclear factor 1β (HNF1β) is a divergent homeobox transcription factor that is expressed in kidney from the first steps of nephrogenesis. Mutations in HNF1B (OMIM #137920) are frequently found in patients with developmental renal pathologies, the mechanisms of which have not been completely elucidated. Here we show that inactivation of Hnf1b in the murine metanephric mesenchyme leads to a drastic tubular defect characterized by the absence of proximal, distal and Henles loop segments. Nephrons were eventually characterized by glomeruli, with a dilated urinary space, directly connected to collecting ducts via a primitive and short tubule. In the absence of HNF1β early nephron precursors gave rise to deformed S-shaped bodies characterized by the absence of the typical bulge of epithelial cells at the bend between the mid and lower segments. The lack of this bulge eventually led to the absence of proximal tubules and Henles loops. The expression of several genes, including Irx1, Osr2 and Pou3f3, was downregulated in the S-shaped bodies. We also observed decreased expression of Dll1 and the consequent defective activation of Notch in the prospective tubular compartment of comma- and S-shaped bodies. Our results reveal a novel hierarchical relationship between HNF1β and key genes involved in renal development. In addition, these studies define a novel structural and functional component of S-shaped bodies at the origin of tubule formation.


Human Molecular Genetics | 2010

A murine model of Denys–Drash syndrome reveals novel transcriptional targets of WT1 in podocytes

Julien Ratelade; Christelle Arrondel; Ghislaine Hamard; Serge Garbay; Scott J. Harvey; Nathalie Biebuyck; Herbert Schulz; Nicholas D. Hastie; Marco Pontoglio; Marie Claire Gubler; Corinne Antignac; Laurence Heidet

The Wilms tumor-suppressor gene WT1, a key player in renal development, also has a crucial role in maintenance of the glomerulus in the mature kidney. However, molecular pathways orchestrated by WT1 in podocytes, where it is highly expressed, remain unknown. Their defects are thought to modify the cross-talk between podocytes and other glomerular cells and ultimately lead to glomerular sclerosis, as observed in diffuse mesangial sclerosis (DMS) a nephropathy associated with WT1 mutations. To identify podocyte WT1 targets, we generated a novel DMS mouse line, performed gene expression profiling in isolated glomeruli and identified excellent candidates that may modify podocyte differentiation and growth factor signaling in glomeruli. Scel, encoding sciellin, a protein of the cornified envelope in the skin, and Sulf1, encoding a 6-O endosulfatase, are shown to be expressed in wild-type podocytes and to be strongly down-regulated in mutants. Co-expression of Wt1, Scel and Sulf1 was also found in a mesonephric cell line, and siRNA-mediated knockdown of WT1 decreased Scel and Sulf1 mRNAs and proteins. By ChIP we show that Scel and Sulf1 are direct WT1 targets. Cyp26a1, encoding an enzyme involved in the degradation of retinoic acid, is shown to be up-regulated in mutant podocytes. Cyp26a1 may play a role in the development of glomerular lesions but does not seem to be regulated by WT1. These results provide novel clues in our understanding of normal glomerular function and early events involved in glomerulosclerosis.


Nucleic Acids Research | 2016

Human mutations affect the epigenetic/bookmarking function of HNF1B

Jonathan Lerner; Alessia Bagattin; Francisco Verdeguer; Munevver Parla Makinistoglu; Serge Garbay; Tristan Felix; Laurence Heidet; Marco Pontoglio

Bookmarking factors are transcriptional regulators involved in the mitotic transmission of epigenetic information via their ability to remain associated with mitotic chromatin. The mechanisms through which bookmarking factors bind to mitotic chromatin remain poorly understood. HNF1β is a bookmarking transcription factor that is frequently mutated in patients suffering from renal multicystic dysplasia and diabetes. Here, we show that HNF1β bookmarking activity is impaired by naturally occurring mutations found in patients. Interestingly, this defect in HNF1β mitotic chromatin association is rescued by an abrupt decrease in temperature. The rapid relocalization to mitotic chromatin is reversible and driven by a specific switch in DNA-binding ability of HNF1β mutants. Furthermore, we demonstrate that importin-β is involved in the maintenance of the mitotic retention of HNF1β, suggesting a functional link between the nuclear import system and the mitotic localization/translocation of bookmarking factors. Altogether, our studies have disclosed novel aspects on the mechanisms and the genetic programs that account for the mitotic association of HNF1β, a bookmarking factor that plays crucial roles in the epigenetic transmission of information through the cell cycle.


Kidney International | 2016

Tubular proteinuria in patients with HNF1α mutations: HNF1α drives endocytosis in the proximal tubule

Sara Terryn; Karo Tanaka; Jean-Philippe Lengelé; Eric Olinger; Danièle Dubois-Laforgue; Serge Garbay; Renata Kozyraki; Patrick Van Der Smissen; Erik Ilsø Christensen; Pierre J. Courtoy; Christine Bellanné-Chantelot; José Timsit; Marco Pontoglio; Olivier Devuyst

Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor expressed in the liver, pancreas, and proximal tubule of the kidney. Mutations of HNF1α cause an autosomal dominant form of diabetes mellitus (MODY-HNF1A) and tubular dysfunction. To gain insights into the role of HNF1α in the proximal tubule, we analyzed Hnf1a-deficient mice. Compared with wild-type littermates, Hnf1a knockout mice showed low-molecular-weight proteinuria and a 70% decrease in the uptake of β2-microglobulin, indicating a major endocytic defect due to decreased expression of megalin/cubilin receptors. We identified several binding sites for HNF1α in promoters of Lrp2 and Cubn genes encoding megalin and cubilin, respectively. The functional interaction of HNF1α with these promoters was shown in C33 epithelial cells lacking endogenous HNF1α. Defective receptor-mediated endocytosis was confirmed in proximal tubule cells from these knockout mice and could be rescued by transfection of wild-type but not mutant HNF1α. Transfection of human proximal tubule HK2 cells with HNF1α was able to upregulate megalin and cubilin expression and to increase endocytosis of albumin. Low-molecular-weight proteinuria was consistently detected in individuals with HNF1A mutations compared with healthy controls and patients with non-MODY-HNF1A diabetes mellitus. Thus, HNF1α plays a key role in the constitutive expression of megalin and cubilin, hence regulating endocytosis in the proximal tubule of the kidney. These findings provide new insight into the renal phenotype of individuals with mutations of HNF1A.

Collaboration


Dive into the Serge Garbay's collaboration.

Top Co-Authors

Avatar

Marco Pontoglio

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessia Bagattin

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Laurence Heidet

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evelyne Fischer

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Filippo Massa

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Karo Tanaka

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Yann Herault

University of Strasbourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge