Sergei Boichuk
Kazan State Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergei Boichuk.
Journal of Virology | 2009
Jennifer Hein; Sergei Boichuk; Jiaping Wu; Yuan Cheng; Raimundo Freire; Parmjit S. Jat; Thomas M. Roberts; Ole Gjoerup
ABSTRACT Simian virus 40 (SV40) large T antigen (LT) is a multifunctional protein that is important for viral replication and oncogenic transformation. Previously, infection of monkey or human cells with SV40 was shown to lead to the induction of DNA damage response signaling, which is required for efficient viral replication. However, it was not clear if LT is sufficient to induce the damage response and, if so, what the genetic requirements and functional consequences might be. Here, we show that the expression of LT alone, without a replication origin, can induce key DNA damage response markers including the accumulation of γ-H2AX and 53BP1 in nuclear foci. Other DNA damage-signaling components downstream of ATM/ATR kinases were induced, including chk1 and chk2. LT also bound the Claspin mediator protein, which normally facilitates the ATR activation of chk1 and monitors cellular replication origins. Stimulation of the damage response by LT depends mainly on binding to Bub1 rather than to the retinoblastoma protein. LT has long been known to stabilize p53 despite functionally inactivating it. We show that the activation of a DNA damage response by LT via Bub1 appears to play a major role in p53 stabilization by promoting the phosphorylation of p53 at Ser15. Accompanying the DNA damage response, LT induces tetraploidy, which is also dependent on Bub1 binding. Taken together, our data suggest that LT, via Bub1 binding, breaches genome integrity mechanisms, leading to DNA damage responses, p53 stabilization, and tetraploidy.
Journal of Virology | 2010
Sergei Boichuk; Liang Hu; Jennifer Hein; Ole Gjoerup
ABSTRACT We demonstrated previously that expression of simian virus 40 (SV40) large T antigen (LT), without a viral origin, is sufficient to induce the hallmarks of a cellular DNA damage response (DDR), such as focal accumulation of γ-H2AX and 53BP1, via Bub1 binding. Here we expand our characterization of LT effects on the DDR. Using comet assays, we demonstrate that LT induces overt DNA damage. The Fanconi anemia pathway, associated with replication stress, becomes activated, since FancD2 accumulates in foci, and monoubiquitinated FancD2 is detected on chromatin. LT also induces a distinct set of foci of the homologous recombination repair protein Rad51 that are colocalized with Nbs1 and PML. The FancD2 and Rad51 foci require neither Bub1 nor retinoblastoma protein binding. Strikingly, wild-type LT is localized on chromatin at, or near, the Rad51/PML foci, but the LT mutant in Bub1 binding is not localized there. SV40 infection was previously shown to trigger ATM activation, which facilitates viral replication. We demonstrate that productive infection also triggers ATR-dependent Chk1 activation and that Rad51 and FancD2 colocalize with LT in viral replication centers. Using small interfering RNA (siRNA)-mediated knockdown, we demonstrate that Rad51 and, to a lesser extent, FancD2 are required for efficient viral replication in vivo, suggesting that homologous recombination is important for high-level extrachromosomal replication. Taken together, the interplay of LT with the DDR is more complex than anticipated, with individual domains of LT being connected to different subcomponents of the DDR and repair machinery.
Cancer Research | 2013
Sergei Boichuk; Joshua A. Parry; Kathleen R. Makielski; Larisa Litovchick; Julianne L. Baron; James Zewe; Agnieszka Wozniak; Keith R. Mehalek; Nina Korzeniewski; Danushka S. Seneviratne; Patrick Schöffski; Maria Debiec-Rychter; James A. DeCaprio; Anette Duensing
Gastrointestinal stromal tumors (GIST) can be successfully treated with imatinib mesylate (Gleevec); however, complete remissions are rare and patients frequently achieve disease stabilization in the presence of residual tumor masses. The clinical observation that discontinuation of treatment can lead to tumor progression suggests that residual tumor cells are, in fact, quiescent and, therefore, able to re-enter the cell-division cycle. In line with this notion, we have previously shown that imatinib induces GIST cell quiescence in vitro through the APC(CDH1)-SKP2-p27(Kip1) signaling axis. Here, we provide evidence that imatinib induces GIST cell quiescence in vivo and that this process also involves the DREAM complex, a multisubunit complex that has recently been identified as an additional key regulator of quiescence. Importantly, inhibition of DREAM complex formation by depletion of the DREAM regulatory kinase DYRK1A or its target LIN52 was found to enhance imatinib-induced cell death. Our results show that imatinib induces apoptosis in a fraction of GIST cells while, at the same time, a subset of cells undergoes quiescence involving the DREAM complex. Inhibition of this process enhances imatinib-induced apoptosis, which opens the opportunity for future therapeutic interventions to target the DREAM complex for more efficient imatinib responses.
PLOS ONE | 2011
Sergei Boichuk; Liang Hu; Kathleen R. Makielski; Pier Paolo Pandolfi; Ole Gjoerup
The promyelocytic leukemia protein (PML) is a tumor suppressor critical for formation of nuclear bodies (NBs) performing important functions in transcription, apoptosis, DNA repair and antiviral responses. Earlier studies demonstrated that simian virus 40 (SV40) initiates replication near PML NBs. Here we show that PML knockdown inhibits viral replication in vivo, thus indicating a positive role of PML early in infection. SV40 large T antigen (LT) induces DNA damage and, consequently, nuclear foci of the key homologous recombination repair protein Rad51 that colocalize with PML. PML depletion abrogates LT-induced Rad51 foci. LT may target PML NBs to gain access to DNA repair factors like Rad51 that are required for viral replication. We have used the SV40 model to gain insight to DNA repair events involving PML. Strikingly, even in normal cells devoid of viral oncoproteins, PML is found to be instrumental for foci of Rad51, Mre11 and BRCA1, as well as homology-directed repair after double-strand break (DSB) induction. Following LT expression or external DNA damage, PML associates with Rad51. PML depletion also causes a loss of RPA foci following γ-irradiation, suggesting that PML is required for processing of DSBs. Immunofluorescent detection of incorporated BrdU without prior denaturation indicates a failure to generate ssDNA foci in PML knockdown cells upon γ-irradiation. Consistent with the lack of RPA and BrdU foci, γ-irradiation fails to induce Chk1 activation, when PML is depleted. Taken together, we have discovered a novel functional connection between PML and the homologous recombination-mediated repair machinery, which might contribute to PML tumor suppressor activity.
Journal of Virology | 2005
Jaehyuk Choi; Jason D. Walker; Sergei Boichuk; Nancy C. Kirkiles-Smith; Nicholas Torpey; Jordan S. Pober; Louis Alexander
ABSTRACT Infected CD4+ T cells are the primary sites of human immunodeficiency virus type 1 (HIV-1) replication in vivo. However, signals from professional antigen-presenting cells (APCs), such as dendritic cells and macrophages, greatly enhance HIV-1 replication in T cells. Here, we report that in cocultures, vascular endothelial cells (ECs), which in humans can also serve as APCs, can enhance HIV-1 production of both CCR5- and CXCR4-utilizing strains approximately 50,000-fold. The observed HIV-1 replication enhancement conferred by ECs occurred only in memory CD4+ T cells, required expression of major histocompatibility complex class II (MHC-II) molecules by the ECs, and could not be conferred by fixed ECs, all of which are consistent with a requirement for EC-mediated T-cell activation via T-cell receptor (TCR) signaling. Deletion of nef (Nef−) decreased HIV-1 production by approximately 100-fold in T cells cocultured with ECs but had no effect on virus production in T cells cocultured with professional APCs or fibroblasts induced to express MHC-II. Human ECs do not express B7 costimulators, but Nef− replication in CD4+-T-cell and EC cocultures could not be rescued by anti-CD28 antibody. ECs act in trans to enhance wild-type but not Nef− replication and facilitate enhanced wild-type replication in naïve T cells when added to T-cell or B-lymphoblastoid cell cocultures, suggesting that ECs also provide a TCR-independent signal to infected T cells. Consistent with these in vitro observations, wild-type HIV-1 replicated 30- to 50-fold more than Nef− in human T cells infiltrating allogeneic human skin grafts on human huPBL-SCID/bg mice, an in vivo model of T-cell activation by ECs. Our studies suggest that ECs, which line the entire cardiovascular system and are, per force, in frequent contact with memory CD4+ T cells, provide signals to HIV-1-infected CD4+ T cells to greatly enhance HIV-1 production in a Nef-dependent manner, a mechanism that could contribute to the development of AIDS.
Clinical & Developmental Immunology | 2017
Kh. S. Khaertynov; Sergei Boichuk; Svetlana F. Khaiboullina; Vladimir A. Anokhin; A. A. Andreeva; Vincent C. Lombardi; M.A. Satrutdinov; E. A. Agafonova; Albert A. Rizvanov
Neonatal sepsis is a significant health issue associated with high mortality. Immune responses associated with neonatal sepsis, such as proinflammatory cytokine production, are believed to play a central role in the pathogenesis of this disease. In the present study, serum levels of the proinflammatory cytokines TNF-α, IL1-β, and IL-6 and the anti-inflammatory cytokines IL-4 and IL-10 were evaluated for 25 subjects with neonatal sepsis. We observed that subjects with late onset of sepsis (LOS), as well as those with early onset of sepsis (EOS), had a substantial increase in serum TNF-α. In contrast to EOS, subjects with LOS demonstrated a significant increase in serum levels IL-6 and IL-10. Additionally, we observed a significant difference in cytokine profiles between acute and postacute cases of neonatal sepsis. For instance, the level of proinflammatory cytokines, such as TNF-α and IL-6, was elevated in the acute phase, whereas the production of anti-inflammatory cytokines, such as IL-10, became substantially upregulated during the postacute phase. Additionally, no correlation was observed between cytokine levels and CRP levels or lymphocyte counts. Thus, in contrast to CRP levels and lymphocyte counts, examination of the cytokine profile can provide valuable information when determining the most effective therapy for treating neonatal sepsis. This information may be useful to physicians when determining if anti-inflammatory or immune stimulatory therapy is warranted.
Frontiers in Immunology | 2015
Sergei Boichuk; Svetlana F. Khaiboullina; Bulat R. Ramazanov; Gulshat R. Khasanova; Karina A. Ivanovskaya; Evgeny Z. Nizamutdinov; Marat R. Sharafutdinov; Ekaterina V. Martynova; Kenny L. DeMeirleir; Jan Hulstaert; Vladimir A. Anokhin; Albert A. Rizvanov; Vincent Lombardi
Plasmacytoid dendritic cells (pDCs) in the periphery of subjects with human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) decrease over time, and the fate of these cells has been the subject of ongoing investigation. Previous studies using animal models as well as studies with humans suggest that these cells may redistribute to the gut. Other studies using animal models propose that the periphery pDCs are depleted and gut is repopulated with naive pDCs from the bone marrow. In the present study, we utilized immunohistochemistry to survey duodenum biopsies of subjects with HIV/AIDS and controls. We observed that subjects with HIV/AIDS had increased infiltration of Ki-67+/CD303+ pDCs, a phenotype consistent with bone marrow-derived pre-pDCs. In contrast, Ki-67+/CD303+ pDCs were not observed in control biopsies. We additionally observed that gut-associated pDCs in HIV/AIDS cases upregulate the proapoptotic enzyme granzyme B; however, no granzyme B was observed in the pDCs of control biopsies. Our data are consistent with reports in animal models that suggest periphery pDCs are depleted by exhaustion and that naive pDCs egress from the bone marrow and ultimately infiltrate the gut mucosa. Additionally, our observation of granzyme B upregulation in naive pDCs may identify a contributing factor to the gut pathology associated with HIV infection.
Molecules | 2017
Sergei Boichuk; Aigul Galembikova; Pavel Dunaev; Elena Valeeva; Elena Shagimardanova; Oleg Gusev; Svetlana F. Khaiboullina
The fact that most gastrointestinal stromal tumors (GISTs) acquire resistance to imatinib (IM)-based targeted therapy remains the main driving force to identify novel molecular targets that are capable to increase GISTs sensitivity to the current therapeutic regimens. Secondary resistance to IM in GISTs typically occurs due to several mechanisms that include hemi- or homo-zygous deletion of the wild-type KIT allele, overexpression of focal adhesion kinase (FAK) and insulin-like growth factor receptor I (IGF-1R) amplification, BRAF mutation, a RTK switch (loss of c-KIT and gain of c-MET/AXL), etc. We established and characterized the IM-resistant GIST T-1 cell line (GIST T-1R) lacking secondary c-KIT mutations typical for the IM-resistant phenotype. The resistance to IM in GIST T-1R cells was due to RTK switch (loss of c-KIT/gain of FGFR2α). Indeed, we have found that FGFR inhibition reduced cellular viability, induced apoptosis and affected the growth kinetics of the IM-resistant GISTs in vitro. In contrast, IM-naive GIST T-1 parental cells were not susceptible to FGFR inhibition. Importantly, inhibition of FGF-signaling restored the susceptibility to IM in IM-resistant GISTs. Additionally, IM-resistant GISTs were less susceptible to certain chemotherapeutic agents as compared to parental IM-sensitive GIST cells. The chemoresistance in GIST T-1R cells is not due to overexpression of ABC-related transporter proteins and might be the result of upregulation of DNA damage signaling and repair (DDR) genes involved in DNA double-strand break (DSB) repair pathways (e.g., XRCC3, Rad51, etc.). Taken together, the established GIST T-1R cell subline might be used for in vitro and in vivo studies to examine the efficacy and prospective use of FGFR inhibitors for patients with IM-resistant, un-resectable and metastatic forms of GISTs with the type of RTK switch indicated above.
Oncotarget | 2017
Jessica L. Rausch; Sergei Boichuk; Areej A. Ali; Sneha S. Patil; Lijun Liu; Donna M. Lee; Matthew F. Brown; Kathleen R. Makielski; Ying Liu; Takahiro Taguchi; Shih-Fan Kuan; Anette Duensing
Most gastrointestinal stromal tumors (GISTs) are caused by activating mutations of the KIT receptor tyrosine kinase. The small molecule inhibitor imatinib mesylate was initially developed to target the ABL1 kinase, which is constitutively activated through chromosomal translocation in BCR-ABL1-positive chronic myeloid leukemia. Because of cross-reactivity of imatinib against the KIT kinase, the drug is also successfully used for the treatment of GIST. Although inhibition of KIT clearly has a major role in the therapeutic response of GIST to imatinib, the contribution of concomitant inhibition of ABL in this context has never been explored. We show here that ABL1 is expressed in the majority of GISTs, including human GIST cell lines. Using siRNA-mediated knockdown, we demonstrate that depletion of KIT in conjunction with ABL1 – hence mimicking imatinib treatment – leads to reduced apoptosis induction and attenuated inhibition of cellular proliferation when compared to depletion of KIT alone. These results are explained by an increased activity of the AKT survival kinase, which is mediated by the cyclin-dependent kinase CDK2, likely through direct phosphorylation. Our results highlight that distinct inhibitory properties of targeted agents can impede antitumor effects and hence provide insights for rational drug development. Novel KIT-targeted agents to treat GIST should therefore comprise an increased specificity for KIT while at the same time displaying a reduced ability to inhibit ABL1.
Anti-Cancer Drugs | 2016
Sergei Boichuk; Aigul Galembikova; Zykova S; Ramazanov B; Khusnutdinov R; Pavel Dunaev; Khaibullina S; Lombardi
Microtubules are known to be one of the most attractive and validated targets in cancer therapy. However, the clinical use of drugs that affect the dynamic state of microtubules has been hindered by chemoresistance and toxicity issues. Accordingly, the development of novel agents that target microtubules is needed. Here, we report the identification of novel compounds with pirrole and carboxylate structures: ethyl-2-amino-pyrrole-3-carboxylates (EAPCs) that provide potent cytotoxic activities against multiple soft tissue cancer cell lines in vitro. Using the MTS cell proliferation assay, we assessed the activity of EAPCs on various cancer cell lines including leiomyosarcoma SK-LMS-1, rhabdomyosarcoma RD, gastrointestinal stromal tumor GIST-T1, A-673 Ewing’s sarcoma, and U-2 OS osteosarcoma. We found that in the majority of cases, two EAPC compounds (EAPC-20 and EAPC-24) considerably inhibited cancer cell proliferation in vitro. The growth-inhibitory effects of EAPC-20 and EAPC-24 were time and dose dependent. The molecular mechanisms of action of these compounds were because of the inhibition of tubulin polymerization and induction of a robust G2/M cell-cycle arrest, leading to considerable accumulation of tumor cells in the M-phase. Finally, EAPCs induced tumor cell death by apoptotic pathways. The above-mentioned effects were also observed in most soft tissue tumor cell lines and the gastrointestinal stromal tumor cell line investigated. Taken together, our data identify potent antitumor activity of EAPCs in vitro, thus providing a novel scaffold with which to develop potent chemotherapeutic agents for cancer therapy.