Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergei V. Adamovich is active.

Publication


Featured researches published by Sergei V. Adamovich.


international conference of the ieee engineering in medicine and biology society | 2001

Virtual reality-enhanced stroke rehabilitation

David Jack; Rares Boian; Alma S. Merians; Marilyn Tremaine; Grigore C. Burdea; Sergei V. Adamovich; Michael Recce; Howard Poizner

A personal computer (PC)-based desktop virtual reality (VR) system was developed for rehabilitating hand function in stroke patients. The system uses two input devices, a CyberGlove and a Rutgers Master II-ND (RMII) force feedback glove, allowing user interaction with a virtual environment. This consists of four rehabilitation routines, each designed to exercise one specific parameter of hand movement: range, speed, fractionation or strength. The use of performance-based target levels is designed to increase patient motivation and individualize exercise difficulty to a patients current state. Pilot clinical trials have been performed using the above system combined with noncomputer tasks, such as pegboard insertion or tracing of 2D patterns. Three chronic stroke patients used this rehabilitation protocol daily for two weeks. Objective measurements showed that each patient showed improvement on most of the hand parameters over the course of the training. Subjective evaluation by the patients was also positive. This technical report focuses on this newly developed technology for VR rehabilitation.


NeuroRehabilitation | 2009

Sensorimotor training in virtual reality: A review

Sergei V. Adamovich; Gerard G. Fluet; Eugene Tunik; Alma S. Merians

Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization.Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targeted brain networks, which in turn can potentially speed up the recovery process. Here we review the existing experimental evidence regarding the beneficial effects of training in virtual environments on the recovery of function in the areas of gait,upper extremity function and balance, in various patient populations. We also discuss possible mechanisms underlying these effects. We feel that future research in the area of virtual rehabilitation should follow several important paths. Imaging studies to evaluate the effects of sensory manipulation on brain activation patterns and the effect of various training parameters on long term changes in brain function are needed to guide future clinical inquiry. Larger clinical studies are also needed to establish the efficacy of sensorimotor rehabilitation using VR in various clinical populations and most importantly, to identify VR training parameters that are associated with optimal transfer to real-world functional improvements.


Neurorehabilitation and Neural Repair | 2006

Sensorimotor Training in a Virtual Reality Environment: Does It Improve Functional Recovery Poststroke?

Alma S. Merians; Howard Poizner; Rares Boian; Grigore C. Burdea; Sergei V. Adamovich

Objective. To investigate the effectiveness of computerized virtual reality (VR) training of the hemiparetic hand of patients poststroke using a system that provides repetitive motor reeducation and skill reacquisition. Methods. Eight subjects in the chronic phase poststroke participated in a 3-week program using their hemiparetic hand in a series of interactive computer games for 13 days of training, weekend breaks, and pretests and posttests. Each subject trained for about 2 to 2.5 h per day. Outcome measures consisted of changes in the computerized measures of thumb and finger range of motion, thumb and finger velocity, fractionation (the ability to move fingers independently), thumb and finger strength, the Jebsen Test of Hand Function, and a Kinematic reach to grasp test. Results. Subjects as a group improved in fractionation of the fingers, thumb and finger range of motion, and thumb and finger speed, retaining those gains at the 1-week retention test. Transfer of these improvements was demonstrated through changes in the Jebsen Test of Hand Function and a decrease after the therapy in the overall time from hand peak velocity to the moment when an object was lifted from the table. Conclusions. It is difficult in current service delivery models to provide the intensity of practice that appears to be needed to effect neural reorganization and functional changes poststroke. Computerized exercise systems may be a way to maximize both the patients’ and the clinicians’ time. The data in this study add support to the proposal to explore novel technologies for incorporation into current practice.


Presence: Teleoperators & Virtual Environments | 2005

A virtual reality-based exercise system for hand rehabilitation post-stroke

Sergei V. Adamovich; Alma S. Merians; Rares Boian; Jeffrey A. Lewis; Marilyn Tremaine; Grigore C. Burdea; Michael Recce; Howard Poizner

This paper presents preliminary results from a virtual reality (VR)-based system for hand rehabilitation that uses a CyberGlove and a Rutgers Master II-ND haptic glove. This computerized system trains finger range of motion, finger flexion speed, independence of finger motion, and finger strength using specific VR simulation exercises. A remote Web-based monitoring station was developed to allow telerehabilitation interventions. The remote therapist observes simplified versions of the patient exercises that are updated in real time. Patient data is stored transparently in an Oracle database, which is also Web accessible through a portal GUI. Thus the remote therapist or attending physician can graph exercise outcomes and thus evaluate patient outcomes at a distance. Data from the VR simulations is complemented by clinical measurements of hand function and strength. Eight chronic post-stroke subjects participated in a pilot study of the above system. In keeping with variability in both their lesion size and site and in their initial upper extremity function, each subject showed improvement on a unique combination of movement parameters in VR training. Importantly, these improvements transferred to gains on clinical tests, as well as to significant reductions in task-completion times for the prehension of real objects. These results are indicative of the potential feasibility of this exercise system for rehabilitation in patients with hand dysfunction resulting from neurological impairment.


Journal of Neuroengineering and Rehabilitation | 2009

Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study.

Sergei V. Adamovich; Gerard G. Fluet; Abraham Mathai; Qinyin Qiu; Jeffrey A. Lewis; Alma S. Merians

BackgroundCurrent neuroscience has identified rehabilitation approaches with the potential to stimulate adaptive changes in the brains of persons with hemiparesis. These approaches include, intensive task-oriented training, bimanual activities and balancing proximal and distal upper extremity interventions to reduce competition between these segments for neural territory.MethodsThis paper describes the design and feasibility testing of a robotic/virtual environment system designed to train the hand and arm of persons with hemiparesis. The system employs a simulated piano that presents visual, auditory and tactile feedback comparable to an actual piano. Arm tracking allows patients to train both the arm and hand as a coordinated unit, emphasizing the integration of both transport and manipulation phases. The piano trainer includes songs and scales that can be performed with one or both hands. Adaptable haptic assistance is available for more involved subjects. An algorithm adjusts task difficulty in proportion to subject performance. A proof of concept study was performed on four subjects with upper extremity hemiparesis secondary to chronic stroke to establish: a) the safety and feasibility of this system and b) the concurrent validity of robotically measured kinematic and performance measures to behavioral measures of upper extremity function.ResultsNone of the subjects experienced adverse events or responses during or after training. As a group, the subjects improved in both performance time and key press accuracy. Three of the four subjects demonstrated improvements in fractionation, the ability to move each finger individually. Two subjects improved their aggregate time on the Jebsen Test of Hand Function and three of the four subjects improved in Wolf Motor Function Test aggregate time.ConclusionThe system designed in this paper has proven to be safe and feasible for the training of hand function for persons with hemiparesis. It features a flexible design that allows for the use and further study of adjustments in point of view, bilateral and unimanual treatment modes, adaptive training algorithms and haptically rendered collisions in the context of rehabilitation of the hemiparetic hand.


Experimental Brain Research | 1999

Pointing in 3D space to remembered targets II: Effects of movement speed toward kinesthetically defined targets

Sergei V. Adamovich; Michail B. Berkinblit; Olga Fookson; Howard Poizner

Abstract The accuracy of visually guided pointing movements decreases with speed. We have shown that for movements to a visually defined remembered target, the variability of the final arm endpoint position does not depend on movement speed. We put forward a hypothesis that this observation can be explained by suggesting that movements directed at remembered targets are produced without ongoing corrections. In the present study, this hypothesis was tested for pointing movements in 3D space to kinesthetically defined remembered targets. Passive versus active acquisition of kinesthetic information was contrasted. Pointing errors, movement kinematics, and joint-angle coordination were analyzed. The movements were performed at a slow speed (average peak tangential velocity of about 1.2 m/s) and at a fast speed (2.7 m/s). No visual feedback was allowed during the target presentation or the movement. Variability in the final position of the arm endpoint did not increase with speed in either the active or the passive condition. Variability in the final values of the arm-orientation angles determining the position of the forearm and of the upper arm in space was also speed invariant. This invariance occurred despite the fact that angular velocities increased by a factor of two for all the angles involved. The speed-invariant variability supports the hypothesis that there is an absence of ongoing corrections for movements to remembered targets: in the case of a slower movement, where there is more time for movement correction, the final arm endpoint variability did not decrease. In contrast to variability in the final endpoint position, the variability in the peak tangential acceleration increased significantly with movement speed. This may imply that the nervous system adopts one of two strategies: either the final endpoint position is not encoded in terms of muscle torques or there is a special on-line mechanism that adjusts movement deceleration according to the muscle-torque variability at the initial stage of the movement. The final endpoint position was on average farther from the shoulder than the target. Constant radial-distance errors were speed dependent in both the active and the passive conditions. In the fast speed conditions, the radial distance overshoots of the targets increased. This increase in radial-distance overshoot with movement speed can be explained by the hypothesis that the final arm position is not predetermined in these experimental conditions, but is defined during the movement by a feedforward or feedback mechanism with an internal delay.


Experimental Brain Research | 2006

Hand preshaping in Parkinson’s disease: effects of visual feedback and medication state

Luis F. Schettino; Sergei V. Adamovich; Wayne A. Hening; Eugene Tunik; Jacob I. Sage; Howard Poizner

Previous studies in our laboratory examining pointing and reach-to-grasp movements of Parkinson’s disease patients (PDPs) have found that PDPs exhibit specific deficits in movement coordination and in the sensorimotor transformations required to accurately guide movements. We have identified a particular difficulty in matching unseen limb position, sensed by proprioception, with a visible target. In the present work, we further explored aspects of complex sensorimotor transformation and motor coordination using a reach-to-grasp task in which object shape, visual feedback, and dopaminergic medication were varied. Normal performance in this task requires coordinated generation of appropriate reach, to bring the hand to the target, and differentiated grasp, to preshape the hand congruent with object form. In Experiment 1, we tested PDPs in the off-medication state. To examine the dependence of subjects on visual feedback and their ability to implement intermodal sensory integration, we required them to reach and grasp the target objects in three conditions: (1) Full Vision, (2) Object Vision with only the target object visible and, (3) No Vision with neither the moving arm nor the target object visible. PDPs exhibited two types of deficits. First, in all conditions, they demonstrated a generalized slowing of movement or bradykinesia. We consider this an intensive deficit, since it involves largely a modulation of the gain of specific task parameters: in this case, velocity of movement. Second, they were less able than controls to extract critical proprioceptive information and integrate it with vision in order to coordinate the reach and grasp components of movement. These deficits which involve the coordination of different inputs and motor components, we classify as coordinative deficits. As in our previous work, the PDPs’ deficits were most marked when they were required to use proprioception to guide their hand to a visible target (Object Vision condition). But even in the full-vision condition, their performance only became fully accurate when both the target and effector (hand) were simultaneously visible. In Experiment 2, PDPs were tested on their dopaminergic replacement therapy. Dopaminergic treatment significantly ameliorated the bradykinesia of the PDPs, but produced no changes in the hand preshaping deficiencies of PDPs. These results suggest that adequate treatment of the PDPs may more readily compensate for intensive, than coordinative deficits, since the latter are likely to depend on specific and time-dependent neural interdependencies that are unlikely to be remediated simply by increasing the gain of a pathway.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2009

Incorporating Haptic Effects Into Three-Dimensional Virtual Environments to Train the Hemiparetic Upper Extremity

Sergei V. Adamovich; Gerard G. Fluet; Alma S. Merians; Abraham Mathai; Qinyin Qiu

Current neuroscience has identified several constructs to increase the effectiveness of upper extremity rehabilitation. One is the use of progressive, skill acquisition-oriented training. Another approach emphasizes the use of bilateral activities. Building on these principles, this paper describes the design and feasibility testing of a robotic/virtual environment system designed to train the arm of persons who have had strokes. The system provides a variety of assistance modes, scalable workspaces and hand-robot interfaces allowing persons with strokes to train multiple joints in three dimensions. The simulations utilize assistance algorithms that adjust task difficulty both online and offline in relation to subject performance. Several distinctive haptic effects have been incorporated into the simulations. An adaptive master-slave relationship between the unimpaired and impaired arm encourages active movement of the subjects hemiparetic arm during a bimanual task. Adaptive anti-gravity support and damping stabilize the arm during virtual reaching and placement tasks. An adaptive virtual spring provides assistance to complete the movement if the subject is unable to complete the task in time. Finally, haptically rendered virtual objects help to shape the movement trajectory during a virtual placement task. A proof of concept study demonstrated this system to be safe, feasible and worthy of further study.


international conference of the ieee engineering in medicine and biology society | 2004

A virtual reality based exercise system for hand rehabilitation post-stroke: transfer to function

Sergei V. Adamovich; Alma S. Merians; Rares Boian; Marilyn Tremaine; G.S. Burdea; Michael Recce; Howard Poizner

We present preliminary results from a virtual reality (VR)-based system for hand rehabilitation that uses a CyberGlove and a Rutgers Master II-ND haptic glove. This system trains finger range of motion, finger flexion speed, independence of finger motion and finger strength. Eight chronic post-stroke subjects participated. In keeping with variability in both the lesion site and in initial upper extremity function, each subject showed improvement on a unique combination of movement parameters in VR training. These improvements transferred to gains on clinical tests, as well as to significant reductions in task completion times for the prehension of real objects. These results are indicative of the potential feasibility of this exercise system for rehabilitation in patients with hand dysfunction resulting from neurological impairment.


Experimental Brain Research | 2000

The timing of arm-trunk coordination is deficient and vision-dependent in Parkinson's patients during reaching movements.

Howard Poizner; Anatol G. Feldman; Mindy F. Levin; Michail B. Berkinblit; Wayne A. Hening; Ami Patel; Sergei V. Adamovich

Abstract. The role of the basal ganglia in the coordination of different body segments and utilization of motor synergies was investigated by analyzing reaching movements to remembered three-dimensional (3D) targets in patients with Parkinsons disease (PD). Arm movements were produced alone or in combination with a forward bending of the trunk, with or without visual feedback. Movements in PD patients were more temporally segmented, as evidenced by irregular changes in tangential velocity profiles. In addition, the relative timing in the onsets and offsets of fingertip and trunk motions were substantially different in PD patients than in control subjects. While the control subjects synchronized both onsets and offsets, the PD patients had large mean intervals between the onsets and offsets of the fingertip and trunk motions. Moreover, PD patients showed substantially larger trial-to-trial variability in these intervals. The degree of synchronization in PD patients gradually increased during the movement under the influence of visual feedback. The mean and variability of the intersegmental intervals decreased as the fingertip approached the target. This improvement in timing occurred even though the separate variability in the timing of arm and trunk motions was not reduced by vision. In combined movements, even without vision, the PD patients were able to achieve normal accuracy, suggesting they were able to use the same movement synergies as normals to control the multiple degrees of freedom involved in the movements and to compensate for the added trunk movement. However, they were unable to recruit these synergies in the stereotyped manner characteristic of healthy subjects. These results suggest that the basal ganglia are involved in the temporal coordination of movement of different body segments and that related timing abnormalities may be partly compensated by vision. Abnormal intersegmental timing may be a highly sensitive indicator of a deficient ability to assemble complex movements in patients with basal-ganglia dysfunction. This abnormality may be apparent even when the overall movement goal of reaching a target is preserved and normal movement synergies appear to be largely intact.

Collaboration


Dive into the Sergei V. Adamovich's collaboration.

Researchain Logo
Decentralizing Knowledge