Sergey A. Kaliberov
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergey A. Kaliberov.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Lyudmila N. Kaliberova; Sergey A. Kaliberov; David T. Curiel; Sergei Kusmartsev
Significance Programmed cell death protein ligand 1 (PD-L1)–expressing cells mediate tumor evasion from immune system by suppressing activated T lymphocytes. A bioactive lipid prostaglandin E2 (PGE2) formed from arachidonic acid by COXs and PGE2 synthases (PGESs) facilitates both cancer inflammation and immune suppression. Here, we show that tumor cells can induce PD-L1 expression in bone marrow–derived cells by affecting PGE2 metabolism in hematopoietic cells. The tumor-induced PD-L1 expression was limited to the myeloid cell lineage and, specifically, to the macrophages and myeloid-derived suppressor cells. Collectively, the obtained results demonstrate that selective inhibition of PGE2-forming enzymes COX2, murine PGES1, or genetic overexpression of PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase could provide a novel approach to regulate both PGE2 levels and PD-L1 expression in cancer, thus alleviating the immune suppression and stimulating antitumor immune response. In recent years, it has been established that programmed cell death protein ligand 1 (PD-L1)–mediated inhibition of activated PD-1+ T lymphocytes plays a major role in tumor escape from immune system during cancer progression. Lately, the anti–PD-L1 and –PD-1 immune therapies have become an important tool for treatment of advanced human cancers, including bladder cancer. However, the underlying mechanisms of PD-L1 expression in cancer are not fully understood. We found that coculture of murine bone marrow cells with bladder tumor cells promoted strong expression of PD-L1 in bone marrow–derived myeloid cells. Tumor-induced expression of PD-L1 was limited to F4/80+ macrophages and Ly-6C+ myeloid-derived suppressor cells. These PD-L1–expressing cells were immunosuppressive and were capable of eliminating CD8 T cells in vitro. Tumor-infiltrating PD-L1+ cells isolated from tumor-bearing mice also exerted morphology of tumor-associated macrophages and expressed high levels of prostaglandin E2 (PGE2)-forming enzymes microsomal PGE2 synthase 1 (mPGES1) and COX2. Inhibition of PGE2 formation, using pharmacologic mPGES1 and COX2 inhibitors or genetic overexpression of PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH), resulted in reduced PD-L1 expression. Together, our study demonstrates that the COX2/mPGES1/PGE2 pathway involved in the regulation of PD-L1 expression in tumor-infiltrating myeloid cells and, therefore, reprogramming of PGE2 metabolism in tumor microenvironment provides an opportunity to reduce immune suppression in tumor host.
Gene Therapy | 2004
Sergey A. Kaliberov; M A Stackhouse; Lyudmila N. Kaliberova; T Zhou; Donald J. Buchsbaum
Specific activation of apoptosis in tumor cells offers a promising approach for cancer therapy. Induction of apoptosis leads to activation of specific proteases. Two major pathways for caspase activation in mammalian cells have been described. One apoptotic pathway involves members of the tumor necrosis factor family of cytokine receptors (eg death receptor 5 (DR5)). The other pathway is controlled by the Bcl-2 family of proteins. The purpose of this study was to investigate whether increased apoptosis occurs in human glioma cells following infection with a recombinant adenoviral vector encoding the human Bax gene under the control of human vascular endothelial growth factor (VEGF) promoter element (AdVEGFBax) in combination with an anti-human DR5 monoclonal antibody (TRA-8). Specific overexpression of exogenous Bax protein induced apoptosis and cell death in glioma cell lines, through activation of both caspase-8 and -9, leading to activation of downstream caspase-3. The relative sensitivity to AdVEGFBax for the glioma cell lines was U251MG>U373MG>U87MG>D54MG. The recently characterized TRA-8 monoclonal antibody induces apoptosis of most TRAIL-sensitive tumor cells by specific binding to DR5 receptors on the cellular membrane. TRA-8 induced rapid apoptosis and cell death in glioma cells, but did not demonstrate detectable cytotoxicity of primary normal human astrocytes. The efficiency of TRA-8-induced apoptosis was variable in different glioma cell lines. The relative sensitivity to TRA-8 was U373MG>U87MG>U251MG>D54MG. The combination of TRA-8 treatment and overexpression of Bax overcame TRA-8 resistance of glioma cells in vitro. Cell viability of U251MG cells was 71.1% for TRA-8 (100 ng/ml) alone, 75.9% for AdVEGFBax (5 MOI) alone and 41.1% for their combination as measured by MTS assay. Similar enhanced apoptosis results were obtained for the other glioma cell lines. In vivo studies demonstrated that the combined treatment significantly (P<0.05) suppressed the growth of U251MG xenografts and produced 60% complete tumor regressions without recurrence. These data suggest that the combination of TRA-8 treatment with specific overexpression of Bax using AdVEGFBax may be an effective approach for the treatment of human malignant gliomas.
Cancer Gene Therapy | 2009
Lyudmila N. Kaliberova; Valentina Krendelchtchikova; D K Harmon; C R Stockard; A S Petersen; J M Markert; George Yancey Gillespie; William E. Grizzle; Donald J. Buchsbaum; Sergey A. Kaliberov
Malignant forms of glioma, the most common primary brain tumors, remain poorly responsive to multimodality therapeutic interventions, including chemotherapy. Suppressed apoptosis and extraordinary invasiveness are important distinctive features that contribute to the malignant phenotype of glioma. We have developed the vascular endothelial growth factor receptor 1 (VEGFR-1/flt-1) conditional replicating adenoviral vector (CRAdRGDflt-IL24) encoding the interleukin-24 (IL-24) gene. We investigated whether a combination of CRAdRGDflt-IL24-mediated oncolytic virotherapy and chemotherapy using temozolomide (TMZ) produces increased cytotoxicity against human glioma cells in comparison with these agents alone. Combination of CRAdRGDflt-IL24 and TMZ significantly enhanced cytotoxicity in vitro, inhibited D54MG tumor growth and prolonged survival of mice harboring intracranial human glioma xenografts in comparison with CRAdRGDflt-IL24 or TMZ alone. These data indicate that combined treatment with CRAdRGDflt-IL24-mediated oncolytic virotherapy and TMZ chemotherapy provides a promising approach for glioma therapy.
Gene Therapy | 2007
Sergey A. Kaliberov; J M Market; George Yancey Gillespie; Valentina Krendelchtchikova; D. Della Manna; Jeffrey C. Sellers; Lyudmila N. Kaliberova; Margaret E. Black; Donald J. Buchsbaum
Combined treatment using adenoviral (Ad)-directed enzyme/prodrug therapy and radiation therapy has the potential to become a powerful method of cancer therapy. We have developed an Ad vector encoding a mutant bacterial cytosine deaminase (bCD) gene (AdbCD-D314A), which has a higher affinity for cytosine than wild-type bCD (bCDwt). The purpose of this study was to evaluate cytotoxicity in vitro and therapeutic efficacy in vivo of the combination of AdbCD-D314A with the prodrug 5-fluorocytosine (5-FC) and ionizing radiation against human glioma. The present study demonstrates that AdbCD-D314A infection resulted in increased 5-FC-mediated cell killing, compared with AdbCDwt. Furthermore, a significant increase in cytotoxicity following AdbCD-D314A and radiation treatment of glioma cells in vitro was demonstrated as compared to AdbCDwt. Animal studies showed significant inhibition of subcutaneous or intracranial tumor growth of D54MG glioma xenografts by the combination of AdbCD-D314A/5-FC with ionizing radiation as compared with either agent alone, and with AdbCDwt/5-FC plus radiation. The results suggest that the combination of AdbCD-D314A/5-FC with radiation produces markedly increased cytotoxic effects in cancer cells in vitro and in vivo. These data indicate that combined treatment with this novel mutant enzyme/prodrug therapy and radiotherapy provides a promising approach for cancer therapy.
Advances in Cancer Research | 2012
Sergey A. Kaliberov; Donald J. Buchsbaum
Radiation therapy methods have evolved remarkably in recent years which have resulted in more effective local tumor control with negligible toxicity of surrounding normal tissues. However, local recurrence and distant metastasis often occur following radiation therapy mostly due to the development of radioresistance through the deregulation of the cell cycle, apoptosis, and inhibition of DNA damage repair mechanisms. Over the last decade, extensive progress in radiotherapy and gene therapy combinatorial approaches has been achieved to overcome resistance of tumor cells to radiation. In this review, we summarize the results from experimental cancer therapy studies on the combination of radiation therapy and gene therapy.
Molecular Cancer Therapeutics | 2008
Lyudmila N. Kaliberova; Debbie Della Manna; Valentina Krendelchtchikova; Margaret E. Black; Donald J. Buchsbaum; Sergey A. Kaliberov
The combination of molecular chemotherapy with radiation therapy has the potential to become a powerful approach for treatment of pancreatic cancer. We have developed an adenoviral vector (AdbCD-D314A) encoding a mutant bacterial cytosine deaminase (bCD) gene, which converts the prodrug 5-fluorocytosine (5-FC) into the active drug 5-fluorouracil. The aim of this study was to investigate AdbCD-D314A/5-FC-mediated cytotoxicity in vitro and therapeutic efficacy in vivo alone and in combination with radiation against human pancreatic cancer cells and xenografts. AdbCD-D314A/5-FC-mediated cytotoxicity alone and in combination with radiation was analyzed using crystal violet inclusion and clonogenic survival assays. CD enzyme activity was determined by measuring conversion of [3H]5-FC to [3H]5-fluorouracil after adenoviral infection of pancreatic cancer cells in vitro and pancreatic tumor xenografts by TLC. S.c. pancreatic tumor xenografts were used to evaluate the therapeutic efficacy of AdbCD-D314A/5-FC molecular chemotherapy in combination with radiation therapy. AdbCD-D314A infection resulted in increased 5-FC-mediated pancreatic cancer cell killing that correlated with significantly enhanced CD enzyme activity compared with AdbCDwt encoding wild-type of bCD. Animal studies showed significant inhibition of growth of human pancreatic tumors treated with AdbCD-D314A/5-FC in comparison with AdbCDwt/5-FC. Also, a significantly greater inhibition of growth of Panc2.03 and MIA PaCA-2 tumor xenografts was produced by the combination of AdbCD-D314A/5-FC with radiation compared with either agent alone. The results indicate that the combination of AdbCD-D314A/5-FC molecular chemotherapy with radiation therapy significantly enhanced cytotoxicity of pancreatic cancer cells in vitro and increased therapeutic efficacy against human pancreatic tumor xenografts. [Mol Cancer Ther 2008;7(9):2845–54]
Cancer Gene Therapy | 2006
Sergey A. Kaliberov; S Chiz; Lyudmila N. Kaliberova; Valentina Krendelchtchikova; D Della Manna; Tong Zhou; Donald J. Buchsbaum
Combined treatment using adenoviral-directed enzyme/prodrug therapy and immunotherapy has the potential to become a powerful alternative method of cancer therapy. We have developed adenoviral vectors encoding the cytosine deaminase gene (Ad-CD) and cytosine deaminase:uracil phosphoribosyltransferase fusion gene (Ad-CD:UPRT). A monoclonal antibody, TRA-8, specifically binds to death receptor 5, one of two death receptors bound by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The purpose of this study was to evaluate cytotoxicity in vitro and therapeutic efficacy in vivo of the combination of Ad-CD:UPRT and TRA-8 against human pancreatic cancer and glioma cell lines. The present study demonstrates that Ad-CD:UPRT infection resulted in increased 5-FC-mediated cell killing, compared with Ad-CD. Furthermore, a significant increase of cytotoxicity following Ad-CD:UPRT/5-FC and TRA-8 treatment of cancer cells in vitro was demonstrated. Animal studies showed significant inhibition of tumor growth of MIA PaCa-2 pancreatic and D54MG glioma xenografts by the combination of Ad-CD:UPRT/5-FC plus TRA-8 as compared with either agent alone or no treatment. The results suggest that the combination of Ad-CD:UPRT/5-FC with TRA-8 produces an additive cytotoxic effect in cancer cells in vitro and in vivo. These data indicate that combined treatment with enzyme/prodrug therapy and TRAIL immunotherapy provides a promising approach for cancer therapy.
Molecular Cancer Therapeutics | 2009
Lyudmila N. Kaliberova; Sergei Kusmartsev; Valentina Krendelchtchikova; Cecil R. Stockard; William E. Grizzle; Donald J. Buchsbaum; Sergey A. Kaliberov
Preclinical and clinical evidence shows that cyclooxygenase-2 (Cox-2)-mediated prostaglandin E2 (PGE2) overexpression plays an important role in tumor growth, metastasis, and immunosuppression. It has been shown that expression of NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a key enzyme responsible for PGE2 inactivation, is suppressed in the majority of cancers, including breast and colon carcinoma. We have developed adenoviral vectors (Ad) encoding the 15-PGDH gene under control of the vascular endothelial growth factor receptor 1 (VEGFR1/flt-1; Adflt-PGDH) and the Cox-2 (Adcox-PGDH) promoters. The purpose of this study was to investigate cytotoxicity in vitro and therapeutic efficacy in vivo of 15-PGDH–mediated cancer therapy. The levels of PGE2 and VEGF expression were correlated with PGE2 receptor and Cox-2 and flt-1 expression in cancer cells. The in vitro study showed that Ad-mediated 15-PGDH expression significantly decreased proliferation and migration of cancer cells. Animal breast and colon tumor therapy studies showed that 15-PGDH gene therapy produced a significant delay in 2LMP and LS174T tumor growth. Combined therapy using 15-PGDH and anti-VEGF antibody (bevacizumab) significantly increased inhibition of growth of LS174T tumor xenografts in comparison with agents alone. These results suggest that 15-PGDH–mediated regulation of PGE2 catabolism in the tumor microenvironment represents a novel approach for therapy of human breast and colon cancer. [Mol Cancer Ther 2009;8(11):3130–9]
Gene Therapy | 2005
Sergey A. Kaliberov; Lyudmila N. Kaliberova; Donald J. Buchsbaum
Overexpression of vascular endothelial growth factor (VEGF) and its cognate receptor KDR has been linked to a more aggressive phenotype of human prostate carcinomas. The importance of signal transduction through the VEGF receptor 2 is illustrated by use of soluble KDR, which binds to VEGF and sequesters this ligand before its binding to cellular receptor. Treatment with recombinant adenovirus AdVEGF-sKDR, encoding sKDR under control of the human VEGF promoter, significantly inhibited the proliferation of human vascular endothelial cells and prostate cancer cells. AdVEGF-sKDR infection decreased migration of endothelial 1P-1B cells (61% reduction) and DU145 prostate carcinoma cells (47%) in comparison with AdCMV-Luc-infected control cells. Ionizing radiation upregulated VEGF promoter activity in prostate carcinoma and endothelial cells. AdVEGF-sKDR infection significantly reduced human vascular endothelial and prostate cancer cell proliferation and sensitized cancer cells to ionizing radiation. In vivo tumor therapy studies demonstrated significant inhibition of DU145 tumor growth in mice that received combined AdVEGF-sKDR infection and ionizing radiation versus AdVEGF-sKDR alone or radiation therapy alone. These results suggest that selective transcriptional targeting of sKDR gene expression employing a radiation inducible promoter can effectively inhibit tumor growth and demonstrate the advantage of combination radiotherapy and gene therapy for the treatment of prostate cancer.
Laboratory Investigation | 2014
Sergey A. Kaliberov; Lyudmila N. Kaliberova; Maurizio Buggio; Jacqueline M. Tremblay; Charles B. Shoemaker; David T. Curiel
The unique ability of human adenovirus serotype 5 (Ad5) to accomplish efficient transduction has allowed the use of Ad5-based vectors for a range of gene therapy applications. Several strategies have been developed to alter tropism of Ad vectors to achieve a cell-specific gene delivery by using fiber modifications via genetic incorporation of targeting motifs. In this study, we have explored the utility of novel anti-human carcinoembryonic antigen (hCEA) single variable domains derived from heavy chain (VHH) camelid family of antibodies to achieve targeted gene transfer. To obtain anti-CEA VHHs, we produced a VHH-display library from peripheral blood lymphocytes RNA of alpacas at the peak of immune response to the hCEA antigen (Ag). We genetically incorporated an anti-hCEA VHH into a de-knobbed Ad5 fiber-fibritin chimera and demonstrated selective targeting to the cognate epitope expressed on the membrane surface of target cells. We report that the anti-hCEA VHH used in this study retains Ag recognition functionality and provides specificity for gene transfer of capsid-modified Ad5 vectors. These studies clearly demonstrated the feasibility of retargeting of Ad5-based gene transfer using VHHs.