Sergey A. Maksimenko
Belarusian State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergey A. Maksimenko.
Scientific Reports | 2015
K. Batrakov; P. Kuzhir; Sergey A. Maksimenko; A. Paddubskaya; S. Voronovich; Ph. Lambin; Tommi Kaplas; Yu. P. Svirko
Thanks to its high electrical conductivity, a graphene plane presents a good shielding efficiency against GHz electromagnetic radiations. Several graphene planes separated by thin polymer spacers add their conductivities arithmetically, because each of them conserves the intrinsic properties of isolated graphene. Maximum absorption of radiations for frequency around 30 GHz is achieved with six separated graphene planes, which is the optimum number. This remarkable result is demonstrated experimentally from electromagnetic measurements performed in the Ka band on a series of multilayers obtained by piling 1, 2, 3 … graphene/PMMA units on a silica substrate. Theoretical calculations convincingly explain the observed absorption and transmission data in the GHz domain. It is concluded that graphene/PMMA multilayers can be used as an efficient optically transparent and flexible shielding media.
IEEE Transactions on Nanotechnology | 2011
Giovanni Miano; Carlo Forestiere; Antonio Maffucci; Sergey A. Maksimenko; Gregory Ya. Slepyan
In carbon nanotubes (CNTs) with large radii, either metallic or semiconducting, several subbands contribute to the electrical conduction, while in metallic nonarmchair nanotubes with small radii the wall curvature induces a large energy gap. In this paper, we propose a model for the signal propagation along single wall CNTs (SWCNTs) of arbitrary chirality, at microwave through terahertz frequencies, which takes into account both these characteristics in a self-consistent way. We first study an SWCNT, disregarding the wall curvature, in the frame of a semiclassical treatment based on the Boltzmann equation in the momentum-independent relaxation time approximation. It allows expressing the longitudinal dynamic conductivity in terms of the number of effective conducting channels. Next, we study the behavior of this number as the nanotube radius varies and its relation with the kinetic inductance and quantum capacitance. Furthermore, we show that the effects of the spatial dispersion are negligible in the collision dominated regimes, whereas they may be important in the collisionless regimes, giving rise to sound waves propagating with the Fermi velocity. Then, we study the effects on the electron transport of the terahertz quantum transition induced by the wall curvature by using a quantum kinetic approach. The nanotube curvature modifies the kinetic inductance and gives arise to an additional RLC branch in the equivalent circuit, related to the terahertz quantum transition. The proposed model can be used effectively for analyzing the signal propagation in complex structures composed of SWCNTs with different chirality, such as bundles of SWCNTs and multiwall CNTs, providing that the tunneling between adjacent shells may be disregarded.
Journal of Nanophotonics | 2012
P. Kuzhir; Alesia Paddubskaya; M. V. Shuba; Sergey A. Maksimenko; Alain Celzard; Vanessa Fierro; G. Amaral-Labat; A. Pizzi; Gintaras Valušis; J. Macutkevic; Maksim Ivanov; Juras Banys; Silvia Bistarelli; A. Cataldo; Matteo Mastrucci; F. Micciulla; I. Sacco; Eleonora Stefanutti; S. Bellucci
Abstract. The wide application of microwaves stimulates searching for new materials with high electrical conductivity and electromagnetic (EM) interference shielding effectiveness (SE). We conducted a comparative study of EM SE in Ka-band demonstrated by ultra-light micro-structural porous carbon solids (carbon foams) of different bulk densities, 0.042 to 0.150 g/cm3, and conventional flexible epoxy resin filled with carbon nanotubes (CNTs) in small concentrations, 1.5 wt.%. Microwave probing of carbon foams showed that the transmission through a 2 mm-thick layer strongly decreases with decreasing the pore size up to the level of 0.6%, due to a rise of reflectance ability. At the same time, 1 mm thick epoxy/CNT composites showed EM attenuation on the level of only 66% to 37%. Calculating the high-frequency axial CNTs’ polarizability on the basis of the idea of using CNT as transmission lines, we devised a strategy to improve the EM SE of CNT-based composites: because of the high EM screening of inner shells of multi-walled CNTs in the GHz range, it is effective to use either single-walled CNT or multi-walled CNTs with a relatively small number of walls (up to 15, i.e., those taking part in the EM interaction, if the CNT length is 20 μm).
IEEE Transactions on Electromagnetic Compatibility | 2012
P. Kuzhir; Alesia Paddubskaya; Sergey A. Maksimenko; V. L. Kuznetsov; Sergey I. Moseenkov; A. I. Romanenko; O. Shenderova; J. Macutkevic; Gintaras Valušis; Philippe Lambin
A novel lightweight onion-like carbon (OLC)-based polymer composite with high electromagnetic (EM) shielding properties is presented. OLC have been produced via the large-scale production technology based on the annealing of detonation nanodiamond under vacuum conditions (or in inert atmosphere). EM shielding effectiveness has been tested in the frequency range of 26-37 GHz. The highest EM attenuation at 36.6 GHz reaching -34 dB was observed for polymethylmethacrylate films comprising 20 wt.% of OLC. The shielding effectiveness data collected for microwave frequencies were found to correlate well with the electrical resistivity measurements by four-probe method as well as conductivity measurements provided by the broadband dielectric spectroscopy (20 Hz-3 GHz). It was proved experimentally that OLC EM shielding capacity can be optimized by varying the nanoonion cluster size and nanodiamond annealing temperature so that effective EM coatings can be produced. Both the experimental observations and theoretical simulations demonstrate that even small (smaller than percolation threshold) additions of OLC particles to a polymer host can noticeably modify the composite response to EM radiation.
Physical Review Letters | 2007
Andrei Nemilentsau; G. Ya. Slepyan; Sergey A. Maksimenko
The thermal radiation from an isolated finite-length carbon nanotube (CNT) is theoretically investigated both in near- and far-field zones. The formation of the discrete spectrum in metallic CNTs in the terahertz range is demonstrated due to the reflection of strongly slowed-down surface-plasmon modes from CNT ends. The effect does not appear in semiconductor CNTs. The concept of a CNT as a thermal nanoantenna is proposed.
Physical Review Letters | 2002
I. V. Bondarev; G. Ya. Slepyan; Sergey A. Maksimenko
The spontaneous decay process of an excited atom placed inside or outside a carbon nanotube is analyzed. Calculations have been performed for various achiral nanotubes. The effect of the nanotube surface is shown to increase the atomic spontaneous decay rate by up to 6 orders of magnitude compared with that of the same atom in vacuum. This increase is associated with nonradiative decay via surface excitations in the nanotube.
Carbon | 1998
Akhlesh Lakhtakia; Gregory Ya. Slepyan; Sergey A. Maksimenko; A. V. Gusakov; Oleg M. Yevtushenko
Abstract Carbon nanotubes (CNs) are electrically small particles at infrared and microwave frequencies. The Mossotti–Clausius formalism for estimating the effective permittivity dyadic of a dilute composite containing CN inclusions is described, and simplifications for certain orientational statistics are discussed. The polarizability dyadic of an electrically small CN is estimated from that of an infinitely long CN of the same cross-sectional diameter. A collection of randomly dispersed, aligned, nonchiral, electrically small CNs is shown to be transparent in the axial direction, but it can be either opaque or transparent in the transverse plane. Its effective electromagnetic response properties can be manipulated by a biasing magnetic field.
Applied Physics Letters | 2016
Konstantin G. Batrakov; P. Kuzhir; Sergey A. Maksimenko; N. Volynets; S. Voronovich; A. Paddubskaya; Gintaras Valušis; Tommi Kaplas; Yu. P. Svirko; Ph. Lambin
Fresnel equations predict that an ultrathin free standing conductive film, thousands times thinner than skin depth, is capable to absorb up to 50% of incident electromagnetic radiations. In the microwave range, the same holds true for a free standing graphene sheet. We demonstrate theoretically and prove experimentally that microwave absorptance of graphene can be enhanced considerably by depositing graphene on a dielectric substrate. On the experimental side, we obtain 80% and 65% absorptance at 30 GHz and 1 THz, respectively. Theory predicts that higher absorptance can be achieved with a suitable choice of the dielectric permittivity and the thickness of the substrate. Absorption can also be maximized by choosing the optimum incidence angle for s-polarized waves in free space or by working in the vicinity of the cut-off frequency of the transverse electric mode in waveguide configuration. The polarization sensitivity of the transmittance and reflectance of graphene layers can be used to tune the polariz...
IEEE Transactions on Nanotechnology | 2012
Carlo Forestiere; Antonio Maffucci; Sergey A. Maksimenko; Giovanni Miano; Gregory Ya. Slepyan
The electromagnetic behavior of multiwall carbon nanotubes (MWCNTs), in the frequency range where only intraband transitions are allowed, depends on the combinations of different aspects: the number of effective conducting channels of each shell, the electron tunneling between adjacent shells, and the electromagnetic interaction between shells and the environment. This paper proposes a general transmission-line (TL) model for describing the propagation of electric signals along MWCNTs at microwave through terahertz frequencies that takes into account all these aspects. The dependence of the number of conducting channels of the single shell on the shell chirality and radius is described in the framework of the quasi-classical transport theory. The description of the intershell tunneling effects on the longitudinal transport of the π-electrons is carried on the basis of the density matrix formalism and Liouvilles equation. The electromagnetic coupling between the shells and ground plane is described in the frame of the classical TL theory. The intershell tunneling qualitatively changes the form of the TL equations through the tunneling inductance and capacitance operators, which have to be added, respectively, in series to the (kinetic and magnetic) inductance matrix and in parallel to the (quantum and electrical) capacitance matrix. For carbon nanotube (CNT) lengths greater than 500 nm, the norm of the tunneling inductance operator is greater than 60% of the norm of the total inductance in the frequency range from gigahertz to terahertz. The tunneling inductance is responsible for a considerable coupling between the shells and gives rise to strong spatial dispersion. The model has been used to analyze the eigenmodes of a double-wall CNT above a ground plane. The intershell tunneling gives arise to strong anomalous dispersion in antisymmetrical modes.
Nanoscale Research Letters | 2013
P. Kuzhir; A. Paddubskaya; Sergey A. Maksimenko; Tommi Kaplas; Yuri Svirko
We analyzed the electromagnetic (EM) shielding effectiveness in the Ka band (26 to 37 GHz) of highly amorphous nanometrically thin pyrolytic carbon (PyC) films with lateral dimensions of 7.2 × 3.4 mm2, which consists of randomly oriented and intertwined graphene flakes with a typical size of a few nanometers. We discovered that the manufactured PyC films, whose thickness is thousand times less than the skin depth of conventional metals, provide a reasonably high EM attenuation. The latter is caused by absorption losses that can be as high as 38% to 20% in the microwave frequency range. Being semi-transparent in visible and infrared spectral ranges and highly conductive at room temperature, PyC films emerge as a promising material for manufacturing ultrathin microwave (e.g., Ka band) filters and shields.