Sergey A. Medvedev
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergey A. Medvedev.
Nature | 2009
Yanming Ma; M. I. Eremets; Artem R. Oganov; Yu Xie; I. A. Trojan; Sergey A. Medvedev; Andriy O. Lyakhov; Mario Valle; Vitali B. Prakapenka
Under pressure, metals exhibit increasingly shorter interatomic distances. Intuitively, this response is expected to be accompanied by an increase in the widths of the valence and conduction bands and hence a more pronounced free-electron-like behaviour. But at the densities that can now be achieved experimentally, compression can be so substantial that core electrons overlap. This effect dramatically alters electronic properties from those typically associated with simple free-electron metals such as lithium (Li; refs 1–3) and sodium (Na; refs 4, 5), leading in turn to structurally complex phases and superconductivity with a high critical temperature. But the most intriguing prediction—that the seemingly simple metals Li (ref. 1) and Na (ref. 4) will transform under pressure into insulating states, owing to pairing of alkali atoms—has yet to be experimentally confirmed. Here we report experimental observations of a pressure-induced transformation of Na into an optically transparent phase at ∼200 GPa (corresponding to ∼5.0-fold compression). Experimental and computational data identify the new phase as a wide bandgap dielectric with a six-coordinated, highly distorted double-hexagonal close-packed structure. We attribute the emergence of this dense insulating state not to atom pairing, but to p–d hybridizations of valence electrons and their repulsion by core electrons into the lattice interstices. We expect that such insulating states may also form in other elements and compounds when compression is sufficiently strong that atomic cores start to overlap strongly.
Nature Materials | 2009
Sergey A. Medvedev; Tyrel M. McQueen; I. A. Troyan; T. Palasyuk; M. I. Eremets; R. J. Cava; S. Shahab Naghavi; Frederick Casper; Vadim Ksenofontov; G. Wortmann; Claudia Felser
In this letter, we report that the superconductivity transition temperature in beta-Fe1.01Se increases from 8.5 to 36.7 K under applied pressure of 8.9 GPa. It then decreases at higher pressure. A dramatic change in volume is observed at the same time Tc rises, due to a collapse of the separation between the Fe2Se2 layers. A clear transition to a linear resistivity normal state is seen on cooling at all pressures. No static magnetic ordering is observed for the whole p-T phase diagram. We also report that at higher pressure (starting around 7 GPa and completed at 38 GPa), Fe1.01Se transforms to a hexagonal NiAs-type structure and displays non-magnetic, insulating behavior. The inclusion of electron correlation in band structure caculations is necessary to describe this behavior, signifying that such correlations are important in this chemical system. Our results strongly support unconventional superconductivity in beta-Fe1.01Se.
Science | 2008
M. I. Eremets; I. A. Trojan; Sergey A. Medvedev; John S. Tse; Yansun Yao
The metallization of hydrogen directly would require pressure in excess of 400 gigapascals (GPa), out of the reach of present experimental techniques. The dense group IVa hydrides attract considerable attention because hydrogen in these compounds is chemically precompressed and a metallic state is expected to be achievable at experimentally accessible pressures. We report the transformation of insulating molecular silane to a metal at 50 GPa, becoming superconducting at a transition temperature of Tc = 17 kelvin at 96 and 120 GPa. The metallic phase has a hexagonal close-packed structure with a high density of atomic hydrogen, creating a three-dimensional conducting network. These experimental findings support the idea of modeling metallic hydrogen with hydrogen-rich alloy.
Nature Communications | 2016
Yanpeng Qi; Pavel G. Naumov; Mazhar N. Ali; Catherine R. Rajamathi; Walter Schnelle; Oleg Barkalov; Michael Hanfland; Shu-Chun Wu; Chandra Shekhar; Yan Sun; Vicky Süß; Marcus Schmidt; Ulrich Schwarz; Eckhard Pippel; P. Werner; R. Hillebrand; Tobias Förster; Erik Kampert; Stuart S. P. Parkin; R. J. Cava; Claudia Felser; Binghai Yan; Sergey A. Medvedev
Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively. We find that bulk MoTe2 exhibits superconductivity with a transition temperature of 0.10 K. Application of external pressure dramatically enhances the transition temperature up to maximum value of 8.2 K at 11.7 GPa. The observed dome-shaped superconductivity phase diagram provides insights into the interplay between superconductivity and topological physics.
Nature Materials | 2009
Sergey A. Medvedev; Tyrel M. McQueen; I. A. Troyan; T. Palasyuk; M. I. Eremets; R. J. Cava; S. Shahab Naghavi; Frederick Casper; Vadim Ksenofontov; G. Wortmann; Claudia Felser
In this letter, we report that the superconductivity transition temperature in beta-Fe1.01Se increases from 8.5 to 36.7 K under applied pressure of 8.9 GPa. It then decreases at higher pressure. A dramatic change in volume is observed at the same time Tc rises, due to a collapse of the separation between the Fe2Se2 layers. A clear transition to a linear resistivity normal state is seen on cooling at all pressures. No static magnetic ordering is observed for the whole p-T phase diagram. We also report that at higher pressure (starting around 7 GPa and completed at 38 GPa), Fe1.01Se transforms to a hexagonal NiAs-type structure and displays non-magnetic, insulating behavior. The inclusion of electron correlation in band structure caculations is necessary to describe this behavior, signifying that such correlations are important in this chemical system. Our results strongly support unconventional superconductivity in beta-Fe1.01Se.
Physical Review B | 2010
Vadim Ksenofontov; G. Wortmann; Aleksandr I. Chumakov; Teuta Gasi; Sergey A. Medvedev; Tyrel M. McQueen; R. J. Cava; Claudia Felser
The temperature and pressure dependence of the partial density of phonon states (phonon-DOS) of iron atoms in superconducting
Advanced Materials | 2017
Yanpeng Qi; Wujun Shi; Pavel G. Naumov; Nitesh Kumar; Raman Sankar; Walter Schnelle; Chandra Shekhar; Fangcheng Chou; Claudia Felser; Binghai Yan; Sergey A. Medvedev
{\text{Fe}}_{1.01}\text{Se}
Nature Communications | 2014
T. Palasyuk; I. A. Troyan; M. I. Eremets; Vadym Drozd; Sergey A. Medvedev; Patryk Zaleski-Ejgierd; Ewelina Magos-Palasyuk; Hongbo Wang; Stanimir A. Bonev; Dmytro Dudenko; Pavel G. Naumov
was studied by
Journal of Applied Physics | 2015
Sergey A. Medvedev; Oleg Barkalov; Pavel G. Naumov; T. Palasyuk; J. Evers; T. M. Klapötke; Claudia Felser
^{57}\text{F}\text{e}
Physical Review B | 2016
Yanpeng Qi; Wujun Shi; Pavel G. Naumov; Nitesh Kumar; Walter Schnelle; Oleg Barkalov; Chandra Shekhar; Horst Borrmann; Claudia Felser; Binghai Yan; Sergey A. Medvedev
nuclear inelastic scattering. The high-energy resolution allows for a detailed observation of spectral properties. A sharpening of the optical phonon modes and shift of all spectral features toward higher energies by