Sergey Bravyi
IBM
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergey Bravyi.
Physical Review Letters | 2006
Sergey Bravyi; Matthew B. Hastings; Frank Verstraete
The Lieb-Robinson bound states that local Hamiltonian evolution in nonrelativistic quantum mechanical theories gives rise to the notion of an effective light cone with exponentially decaying tails. We discuss several consequences of this result in the context of quantum information theory. First, we show that the information that leaks out to spacelike separated regions is negligible and that there is a finite speed at which correlations and entanglement can be distributed. Second, we discuss how these ideas can be used to prove lower bounds on the time it takes to convert states without topological quantum order to states with that property. Finally, we show that the rate at which entropy can be created in a block of spins scales like the boundary of that block.
Annals of Physics | 2002
Sergey Bravyi; Alexei Kitaev
We define a model of quantum computation with local fermionic modes (LFMs)—sites which can be either empty or occupied by a fermion. With the standard correspondence between the Foch space of m LFMs and the Hilbert space of m qubits, simulation of one fermionic gate takes O(m) qubit gates and vice versa. We show that using different encodings, the simulation cost can be reduced to O(log m) and a constant, respectively. Nearest neighbors fermionic gates on a graph of bounded degree can be simulated at a constant cost. A universal set of fermionic gates is found. We also study computation with Majorana fermions which are basically halves of LFMs. Some connection to qubit quantum codes is made.
Journal of Mathematical Physics | 2010
Sergey Bravyi; Matthew B. Hastings; Spyridon Michalakis
We study zero-temperature stability of topological phases of matter under weak time-independent perturbations. Our results apply to quantum spin Hamiltonians that can be written as a sum of geometrically local commuting projectors on a D-dimensional lattice with certain topological order conditions. Given such a Hamiltonian H0, we prove that there exists a constant threshold ϵ>0 such that for any perturbation V representable as a sum of short-range bounded-norm interactions, the perturbed Hamiltonian H=H0+ϵV has well-defined spectral bands originating from low-lying eigenvalues of H0. These bands are separated from the rest of the spectra and from each other by a constant gap. The band originating from the smallest eigenvalue of H0 has exponentially small width (as a function of the lattice size). Our proof exploits a discrete version of Hamiltonian flow equations, the theory of relatively bounded operators, and the Lieb–Robinson bound.
Physical Review A | 2006
Sergey Bravyi
We consider topological quantum computation (TQC) with a particular class of anyons that are believed to exist in the fractional quantum Hall effect state at Landau-level filling fraction v =5/2. Since the braid group representation describing the statistics of these anyons is not computationally universal, one cannot directly apply the standard TQC technique. We propose to use very noisy nontopological operations such as direct short-range interactions between anyons to simulate a universal set of gates. Assuming that all TQC operations are implemented perfectly, we prove that the threshold error rate for nontopological operations is above 14%. The total number of nontopological computational elements that one needs to simulate a quantum circuit with L gates scales as L(ln L)to the 3rd.
Physical Review Letters | 2013
Sergey Bravyi; Jeongwan Haah
A big open question in the quantum information theory concerns feasibility of a selfcorrecting quantum memory. A quantum state recorded in such memory can be stored reliably for a macroscopic time without need for active error correction if the memory is put in contact with a cold enough thermal bath. In this paper we derive a rigorous lower bound on the memory time Tmem of the 3D Cubic Code model which was recently conjectured to have a self-correcting behavior. Assuming that dynamics of the memory system can be described by a Markovian master equation of Davies form, we prove that Tmem ≥ L for some constant c > 0, where L is the lattice size and β is the inverse temperature of the bath. However, this bound applies only if the lattice size does not exceed certain critical value L∗ ∼ e. We also report a numerical Monte Carlo simulation of the studied memory indicating that our analytic bounds on Tmem are tight up to constant coefficients. In order to model the readout step we introduce a new decoding algorithm which might be of independent interest. Our decoder can be implemented efficiently for any topological stabilizer code and has a constant error threshold under random uncorrelated errors.
Annals of Physics | 2011
Sergey Bravyi; David P. DiVincenzo; Daniel Loss
Abstract The Schrieffer–Wolff (SW) method is a version of degenerate perturbation theory in which the low-energy effective Hamiltonian H eff is obtained from the exact Hamiltonian by a unitary transformation decoupling the low-energy and high-energy subspaces. We give a self-contained summary of the SW method with a focus on rigorous results. We begin with an exact definition of the SW transformation in terms of the so-called direct rotation between linear subspaces. From this we obtain elementary proofs of several important properties of H eff such as the linked cluster theorem. We then study the perturbative version of the SW transformation obtained from a Taylor series representation of the direct rotation. Our perturbative approach provides a systematic diagram technique for computing high-order corrections to H eff . We then specialize the SW method to quantum spin lattices with short-range interactions. We establish unitary equivalence between effective low-energy Hamiltonians obtained using two different versions of the SW method studied in the literature. Finally, we derive an upper bound on the precision up to which the ground state energy of the n th-order effective Hamiltonian approximates the exact ground state energy.
Physical Review Letters | 2008
Sergey Bravyi; Daniel Loss; Barbara M. Terhal
We show how to map a given n-qubit target Hamiltonian with bounded-strength k-body interactions onto a simulator Hamiltonian with two-body interactions, such that the ground-state energy of the target and the simulator Hamiltonians are the same up to an extensive error O(epsilon n) for arbitrary small epsilon. The strength of the interactions in the simulator Hamiltonian depends on epsilon and k but does not depend on n. We accomplish this reduction using a new way of deriving an effective low-energy Hamiltonian which relies on the Schrieffer-Wolff transformation of many-body physics.
Physical Review Letters | 2010
Sergey Bravyi; David Poulin; Barbara M. Terhal
We ask whether there are fundamental limits on storing quantum information reliably in a bounded volume of space. To investigate this question, we study quantum error correcting codes specified by geometrically local commuting constraints on a 2D lattice of finite-dimensional quantum particles. For these 2D systems, we derive a tradeoff between the number of encoded qubits k, the distance of the code d, and the number of particles n. It is shown that kd{2}=O(n) where the coefficient in O(n) depends only on the locality of the constraints and dimension of the Hilbert spaces describing individual particles. The analogous tradeoff for the classical information storage is k sqrt[d]=O(n).
SIAM Journal on Computing | 2009
Sergey Bravyi; Barbara M. Terhal
We study several problems related to properties of nonnegative matrices that arise at the boundary between quantum and classical probabilistic computation. Our results are twofold. First, we identify a large class of quantum Hamiltonians describing systems of qubits for which the adiabatic evolution can be efficiently simulated on a classical probabilistic computer. These are stoquastic local Hamiltonians with a “frustration-free” ground-state. A Hamiltonian belongs to this class iff it can be represented as
Physical Review Letters | 2012
Sergey Bravyi; Libor Caha; Ramis Movassagh; Daniel Nagaj; Peter W. Shor
H=\sum_{a}H_{a}