Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey Dikalov is active.

Publication


Featured researches published by Sergey Dikalov.


Journal of Experimental Medicine | 2007

Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction.

Tomasz J. Guzik; Nyssa Hoch; Kathryn Brown; Louise McCann; Ayaz Rahman; Sergey Dikalov; Jörg J. Goronzy; Cornelia M. Weyand; David G. Harrison

Hypertension promotes atherosclerosis and is a major source of morbidity and mortality. We show that mice lacking T and B cells (RAG-1−/− mice) have blunted hypertension and do not develop abnormalities of vascular function during angiotensin II infusion or desoxycorticosterone acetate (DOCA)–salt. Adoptive transfer of T, but not B, cells restored these abnormalities. Angiotensin II is known to stimulate reactive oxygen species production via the nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase in several cells, including some immune cells. Accordingly, adoptive transfer of T cells lacking the angiotensin type I receptor or a functional NADPH oxidase resulted in blunted angiotensin II–dependent hypertension and decreased aortic superoxide production. Angiotensin II increased T cell markers of activation and tissue homing in wild-type, but not NADPH oxidase–deficient, mice. Angiotensin II markedly increased T cells in the perivascular adipose tissue (periadventitial fat) and, to a lesser extent the adventitia. These cells expressed high levels of CC chemokine receptor 5 and were commonly double negative (CD3+CD4−CD8−). This infiltration was associated with an increase in intercellular adhesion molecule-1 and RANTES in the aorta. Hypertension also increased T lymphocyte production of tumor necrosis factor (TNF) α, and treatment with the TNFα antagonist etanercept prevented the hypertension and increase in vascular superoxide caused by angiotensin II. These studies identify a previously undefined role for T cells in the genesis of hypertension and support a role of inflammation in the basis of this prevalent disease. T cells might represent a novel therapeutic target for the treatment of high blood pressure.


Circulation Research | 2005

NAD(P)H Oxidase 4 Mediates Transforming Growth Factor-β1–Induced Differentiation of Cardiac Fibroblasts Into Myofibroblasts

Ioan Cucoranu; Roza E. Clempus; Anna Dikalova; Patrick J. Phelan; Srividya Ariyan; Sergey Dikalov; Dan Sorescu

Human cardiac fibroblasts are the main source of cardiac fibrosis associated with cardiac hypertrophy and heart failure. Transforming growth factor-β1 (TGF-β1) irreversibly converts fibroblasts into pathological myofibroblasts, which express smooth muscle α-actin (SM α-actin) de novo and produce extracellular matrix. We hypothesized that TGF-β1–stimulated conversion of fibroblasts to myofibroblasts requires reactive oxygen species derived from NAD(P)H oxidases (Nox). We found that TGF-β1 potently upregulates the contractile marker SM α-actin mRNA (7.5±0.8-fold versus control). To determine whether Nox enzymes are involved, we first performed quantitative real time polymerase chain reaction and found that Nox5 and Nox4 are abundantly expressed in cardiac fibroblasts, whereas Nox1 and Nox2 are barely detectable. On stimulation with TGF-β1, Nox4 mRNA is dramatically upregulated by 16.2±0.8-fold (n=3, P<0.005), whereas Nox5 is downregulated. Small interference RNA against Nox4 downregulates Nox4 mRNA by 80±5%, inhibits NADPH-driven superoxide production in response to TGF-β1 by 65±7%, and reduces TGF-β1–induced expression of SM α-actin by 95±2% (n=6, P<0.05). Because activation of small mothers against decapentaplegic (Smads) 2/3 is critical for myofibroblast conversion in response to TGF-β1, we also determined whether Nox4 affects Smad 2/3 phosphorylation. Depletion of Nox4 but not Nox5 inhibits baseline and TGF-β1 stimulation of Smad 2/3 phosphorylation by 75±5% and 68±3%, respectively (n=7, P<0.0001). We conclude that Nox 4 mediates TGF-β1–induced conversion of fibroblasts to myofibroblasts by regulating Smad 2/3 activation. Thus, Nox4 may play a critical role in the pathological activation of cardiac fibroblasts in cardiac fibrosis associated with human heart failure.


Hypertension | 2002

Role of p47 phox in Vascular Oxidative Stress and Hypertension Caused by Angiotensin II

Ulf Landmesser; Hua Cai; Sergey Dikalov; Louise McCann; Jinah Hwang; Hanjoong Jo; Steven M. Holland; David G. Harrison

Abstract—Hypertension caused by angiotensin II is dependent on vascular superoxide (O2·−) production. The nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase is a major source of vascular O2·− and is activated by angiotensin II in vitro. However, its role in angiotensin II-induced hypertension in vivo is less clear. In the present studies, we used mice deficient in p47phox, a cytosolic subunit of the NADPH oxidase, to study the role of this enzyme system in vivo. In vivo, angiotensin II infusion (0.7 mg/kg per day for 7 days) increased systolic blood pressure from 105±2 to 151±6 mm Hg and increased vascular O2·− formation 2- to 3-fold in wild-type (WT) mice. In contrast, in p47phox-/- mice the hypertensive response to angiotensin II infusion (122±4 mm Hg;P <0.05) was markedly blunted, and there was no increase of vascular O2·− production. In situ staining for O2·− using dihydroethidium revealed a marked increase of O2·−production in both endothelial and vascular smooth muscle cells of angiotensin II-treated WT mice, but not in those of p47phox-/- mice. To directly examine the role of the NAD(P)H oxidase in endothelial production of O2·−, endothelial cells from WT and p47phox-/- mice were cultured. Western blotting confirmed the absence of p47phox in p47phox-/- mice. Angiotensin II increased O2·− production in endothelial cells from WT mice, but not in those from p47phox-/- mice, as determined by electron spin resonance spectroscopy. These results suggest a pivotal role of the NAD(P)H oxidase and its subunit p47phox in the vascular oxidant stress and the blood pressure response to angiotensin II in vivo.


Circulation Research | 2008

Molecular Mechanisms of Angiotensin II–Mediated Mitochondrial Dysfunction Linking Mitochondrial Oxidative Damage and Vascular Endothelial Dysfunction

Abdulrahman K. Doughan; David G. Harrison; Sergey Dikalov

Mitochondrial dysfunction is a prominent feature of most cardiovascular diseases. Angiotensin (Ang) II is an important stimulus for atherogenesis and hypertension; however, its effects on mitochondrial function remain unknown. We hypothesized that Ang II could induce mitochondrial oxidative damage that in turn might decrease endothelial nitric oxide (NO˙) bioavailability and promote vascular oxidative stress. The effect of Ang II on mitochondrial ROS, mitochondrial respiration, membrane potential, glutathione, and endothelial NO˙ was studied in isolated mitochondria and intact bovine aortic endothelial cells using electron spin resonance, dihydroethidium high-performance liquid chromatography –based assay, Amplex Red and cationic dye fluorescence. Ang II significantly increased mitochondrial H2O2 production. This increase was blocked by preincubation of intact cells with apocynin (NADPH oxidase inhibitor), uric acid (scavenger of peroxynitrite), chelerythrine (protein kinase C inhibitor), NG-nitro-l-arginine methyl ester (nitric oxide synthase inhibitor), 5-hydroxydecanoate (mitochondrial ATP-sensitive potassium channels inhibitor), or glibenclamide. Depletion of p22phox subunit of NADPH oxidase with small interfering RNA also inhibited Ang II–mediated mitochondrial ROS production. Ang II depleted mitochondrial glutathione, increased state 4 and decreased state 3 respirations, and diminished mitochondrial respiratory control ratio. These responses were attenuated by apocynin, 5-hydroxydecanoate, and glibenclamide. In addition, 5-hydroxydecanoate prevented the Ang II–induced decrease in endothelial NO˙ and mitochondrial membrane potential. Therefore, Ang II induces mitochondrial dysfunction via a protein kinase C–dependent pathway by activating the endothelial cell NADPH oxidase and formation of peroxynitrite. Furthermore, mitochondrial dysfunction in response to Ang II modulates endothelial NO˙ and &OV0151; generation, which in turn has ramifications for development of endothelial dysfunction.


Circulation Research | 2002

Novel Role of gp91phox-Containing NAD(P)H Oxidase in Vascular Endothelial Growth Factor–Induced Signaling and Angiogenesis

Masuko Ushio-Fukai; Yan Tang; Tohru Fukai; Sergey Dikalov; Yuxian Ma; Mitsuaki Fujimoto; Mark T. Quinn; Patrick J. Pagano; Chad Johnson; R. Wayne Alexander

Vascular endothelial growth factor (VEGF) induces angiogenesis by stimulating endothelial cell proliferation and migration, primarily through the receptor tyrosine kinase VEGF receptor2 (Flk1/KDR). Reactive oxygen species (ROS) derived from NAD(P)H oxidase are critically important in many aspects of vascular cell regulation, and both the small GTPase Rac1 and gp91(phox) are critical components of the endothelial NAD(P)H oxidase complex. A role of NAD(P)H oxidase in VEGF-induced angiogenesis, however, has not been defined. In the present study, electron spin resonance spectroscopy is utilized to demonstrate that VEGF stimulates O2*- production, which is inhibited by the NAD(P)H oxidase inhibitor, diphenylene iodonium, as well as by overexpression of dominant-negative Rac1 (N17Rac1) and transfection of gp91(phox) antisense oligonucleotides in human umbilical vein endothelial cells (ECs). Antioxidants, including N-acetylcysteine (NAC), various NAD(P)H oxidase inhibitors, and N17Rac1 significantly attenuate not only VEGF-induced KDR tyrosine phosphorylation but also proliferation and migration of ECs. Importantly, these effects of VEGF are dramatically inhibited in cells transfected with gp91(phox) antisense oligonucleotides. By contrast, ROS are not involved in mediating these effects of sphingosine 1-phosphate (S1P) on ECs. Sponge implant assays demonstrate that VEGF-, but not S1P-, induced angiogenesis is significantly reduced in wild-type mice treated with NAC and in gp91(phox-/-) mice, suggesting that ROS derived from gp91(phox)-containing NAD(P)H oxidase play an important role in angiogenesis in vivo. These studies indicate that VEGF-induced endothelial cell signaling and angiogenesis is tightly controlled by the reduction/oxidation environment at the level of VEGF receptor and provide novel insights into the NAD(P)H oxidase as a potential therapeutic target for angiogenesis-dependent diseases.


Circulation | 2002

Vascular Oxidative Stress and Endothelial Dysfunction in Patients With Chronic Heart Failure Role of Xanthine-Oxidase and Extracellular Superoxide Dismutase

Ulf Landmesser; Stephan Spiekermann; Sergey Dikalov; Helma Tatge; Ragna Wilke; Christoph N. Kohler; David G. Harrison; Burkhard Hornig; Helmut Drexler

Background—Impaired flow-dependent, endothelium-mediated vasodilation (FDD) in patients with chronic heart failure (CHF) results, at least in part, from accelerated degradation of nitric oxide by oxygen radicals. The mechanisms leading to increased vascular radical formation, however, remain unclear. Therefore, we determined endothelium-bound activities of extracellular superoxide dismutase (ecSOD), a major vascular antioxidant enzyme, and xanthine-oxidase, a potent radical producing enzyme, and their relation to FDD in patients with CHF. Methods and Results—ecSOD and xanthine-oxidase activities, released from endothelium into plasma by heparin bolus injection, were determined in 14 patients with CHF and 10 control subjects. FDD of the radial artery was measured using high-resolution ultrasound and was assessed before and after administration of the antioxidant vitamin C (25 mg/min; IA). In patients with CHF, endothelium-bound ecSOD activity was substantially reduced (5.0±0.7 versus 14.4±2.6 U · mL−1 · min−1;P <0.01) and closely related to FDD (r =0.61). Endothelium-bound xanthine-oxidase activity was increased by >200% (38±10 versus 12±4 nmol O2·− · &mgr;L−1;P <0.05) and inversely related to FDD (r =−0.35) in patients with CHF. In patients with low ecSOD and high xanthine-oxidase activity, a greater benefit of vitamin C on FDD was observed, ie, the portion of FDD inhibited by radicals correlated negatively with ecSOD (r =−0.71) but positively with xanthine-oxidase (r =0.75). Conclusions—These results demonstrate that both increased xanthine-oxidase and reduced ecSOD activity are closely associated with increased vascular oxidative stress in patients with CHF. This loss of vascular oxidative balance likely represents a novel mechanism contributing to endothelial dysfunction in CHF.


Circulation Research | 2010

Therapeutic Targeting of Mitochondrial Superoxide in Hypertension

Anna Dikalova; Alfiya Bikineyeva; Klaudia Budzyn; Rafal R. Nazarewicz; Louise McCann; William Lewis; David G. Harrison; Sergey Dikalov

Rationale: Superoxide (&OV0151;) has been implicated in the pathogenesis of many human diseases including hypertension; however, commonly used antioxidants have proven ineffective in clinical trials. It is possible that these agents are not adequately delivered to the subcellular sites of superoxide production. Objective: Because the mitochondria are important sources of reactive oxygen species, we postulated that mitochondrial targeting of superoxide scavenging would have therapeutic benefit. Methods and Results: In this study, we found that the hormone angiotensin (Ang II) increased endothelial mitochondrial superoxide production. Treatment with the mitochondria-targeted antioxidant mitoTEMPO decreased mitochondrial &OV0151;, inhibited the total cellular &OV0151;, reduced cellular NADPH oxidase activity, and restored the level of bioavailable NO. These effects were mimicked by overexpressing the mitochondrial MnSOD (SOD2), whereas SOD2 depletion with small interfering RNA increased both basal and Ang II–stimulated cellular &OV0151;. Treatment of mice in vivo with mitoTEMPO attenuated hypertension when given at the onset of Ang II infusion and decreased blood pressure by 30 mm Hg following establishment of both Ang II–induced and DOCA salt hypertension, whereas a similar dose of nontargeted TEMPOL was not effective. In vivo, mitoTEMPO decreased vascular &OV0151;, increased vascular NO production and improved endothelial-dependent relaxation. Interestingly, transgenic mice overexpressing mitochondrial SOD2 demonstrated attenuated Ang II–induced hypertension and vascular oxidative stress similar to mice treated with mitoTEMPO. Conclusions: These studies show that mitochondrial &OV0151; is important for the development of hypertension and that antioxidant strategies specifically targeting this organelle could have therapeutic benefit in this and possibly other diseases.


Free Radical Biology and Medicine | 2011

Cross talk between mitochondria and NADPH oxidases.

Sergey Dikalov

Reactive oxygen species (ROS) play an important role in physiological and pathological processes. In recent years, a feed-forward regulation of the ROS sources has been reported. The interactions between the main cellular sources of ROS, such as mitochondria and NADPH oxidases, however, remain obscure. This work summarizes the latest findings on the role of cross talk between mitochondria and NADPH oxidases in pathophysiological processes. Mitochondria have the highest levels of antioxidants in the cell and play an important role in the maintenance of cellular redox status, thereby acting as an ROS and redox sink and limiting NADPH oxidase activity. Mitochondria, however, are not only a target for ROS produced by NADPH oxidase but also a significant source of ROS, which under certain conditions may stimulate NADPH oxidases. This cross talk between mitochondria and NADPH oxidases, therefore, may represent a feed-forward vicious cycle of ROS production, which can be pharmacologically targeted under conditions of oxidative stress. It has been demonstrated that mitochondria-targeted antioxidants break this vicious cycle, inhibiting ROS production by mitochondria and reducing NADPH oxidase activity. This may provide a novel strategy for treatment of many pathological conditions including aging, atherosclerosis, diabetes, hypertension, and degenerative neurological disorders in which mitochondrial oxidative stress seems to play a role. It is conceivable that the use of mitochondria-targeted treatments would be effective in these conditions.


Circulation | 2005

Nox1 Overexpression Potentiates Angiotensin II-Induced Hypertension and Vascular Smooth Muscle Hypertrophy in Transgenic Mice

Anna Dikalova; Roza E. Clempus; Bernard Lassègue; Guangjie Cheng; James McCoy; Sergey Dikalov; Alejandra San Martín; Alicia N. Lyle; David S. Weber; Daiana Weiss; W. Robert Taylor; Harald Schmidt; Gary K. Owens; J. David Lambeth; Kathy K. Griendling

Background— Reactive oxygen species (ROS) have been implicated in the development of cardiovascular pathologies. NAD(P)H oxidases (Noxes) are major sources of reactive oxygen species in the vessel wall, but the importance of individual Nox homologues in specific layers of the vascular wall is unclear. Nox1 upregulation has been implicated in cardiovascular pathologies such as hypertension and restenosis. Methods and Results— To investigate the pathological role of Nox1 upregulation in vascular smooth muscle, transgenic mice overexpressing Nox1 in smooth muscle cells (TgSMCnox1) were created, and the impact of Nox1 upregulation on the medial hypertrophic response during angiotensin II (Ang II)–induced hypertension was studied. These mice have increased expression of Nox1 protein in the vasculature, which is accompanied by increased superoxide production. Infusion of Ang II (0.7 mg/kg per day) into these mice for 2 weeks led to a potentiation of superoxide production compared with similarly treated negative littermate controls. Systolic blood pressure and aortic hypertrophy were also markedly greater in TgSMCnox1 mice than in their littermate controls. To confirm that this potentiation of vascular hypertrophy and hypertension was due to increased ROS formation, additional groups of mice were coinfused with the antioxidant Tempol. Tempol decreased the level of Ang II-induced aortic superoxide production and partially reversed the hypertrophic and hypertensive responses in these animals. Conclusions— These data indicate that smooth muscle-specific Nox1 overexpression augments the oxidative, pressor, and hypertrophic responses to Ang II, supporting the concept that medial Nox1 participates in the development of cardiovascular pathologies.


Free Radical Biology and Medicine | 2008

Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production

Sergey Dikalov; Anna Dikalova; Alfiya Bikineyeva; Harald Schmidt; David G. Harrison; Kathy K. Griendling

NADPH oxidases are major sources of superoxide (O2*-) and hydrogen peroxide (H2O2) in vascular cells. Production of these reactive oxygen species (ROS) is essential for cell proliferation and differentiation, while ROS overproduction has been implicated in hypertension and atherosclerosis. It is known that the heme-containing catalytic subunits Nox1 and Nox4 are responsible for oxygen reduction in vascular smooth muscle cells from large arteries. However, the exact mechanism of ROS production by NADPH oxidases is not completely understood. We hypothesized that Nox1 and Nox4 play distinct roles in basal and angiotensin II (AngII)-stimulated production of O2*- and H2O2. Nox1 and Nox4 expression in rat aortic smooth muscle cells (RASMCs) was selectively reduced by treatment with siNox4 or antisense Nox1 adenovirus. Production of O2*- and H2O2 in intact RASMCs was analyzed by dihydroethidium and Amplex Red assay. Activity of NADPH oxidases was measured by NADPH-dependent O2*- and H2O2 production using electron spin resonance (ESR) and 1-hydroxy-3-carboxypyrrolidine (CPH) in the membrane fraction in the absence of cytosolic superoxide dismutase. It was found that production of O2*- by quiescent RASMC NADPH oxidases was five times less than H2O2 production. Stimulation of cells with AngII led to a 2-fold increase of O2*- production by NADPH oxidases, with a small 15 to 30% increase in H2O2 formation. Depletion of Nox4 in RASMCs led to diminished basal H2O2 production, but did not affect O2*- or H2O2 production stimulated by AngII. In contrast, depletion of Nox1 in RASMCs inhibited production of O2*- and AngII-stimulated H2O2 in the membrane fraction and intact cells. Our data suggest that Nox4 produces mainly H2O2, while Nox1 generates mostly O2*- that is later converted to H2O2. Therefore, Nox4 is responsible for basal H2O2 production, while O2*- production in nonstimulated and AngII-stimulated cells depends on Nox1. The difference in the products generated by Nox1 and Nox4 may help to explain the distinct roles of these NADPH oxidases in cell signaling. These findings also provide important insight into the origin of H2O2 in vascular cells, and may partially account for the limited pharmacological effect of antioxidant treatments with O2*- scavengers that do not affect H2O2.

Collaboration


Dive into the Sergey Dikalov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Dikalova

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alfiya Bikineyeva

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rafal R. Nazarewicz

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Fink

University of Freiburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge