Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey Gorlatov is active.

Publication


Featured researches published by Sergey Gorlatov.


Nature Medicine | 2005

Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus

Theodore Oliphant; Michael Engle; Grant E. Nybakken; Chris Doane; Syd Johnson; Ling Huang; Sergey Gorlatov; Erin Mehlhop; Anantha Marri; Kyung Min Chung; Gregory D. Ebel; Laura D. Kramer; Daved H. Fremont; Michael S. Diamond

Neutralization of West Nile virus (WNV) in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Using random mutagenesis and yeast surface display, we defined individual contact residues of 14 newly generated monoclonal antibodies against domain III of the WNV E protein. Monoclonal antibodies that strongly neutralized WNV localized to a surface patch on the lateral face of domain III. Convalescent antibodies from individuals who had recovered from WNV infection also detected this epitope. One monoclonal antibody, E16, neutralized 10 different strains in vitro, and showed therapeutic efficacy in mice, even when administered as a single dose 5 d after infection. A humanized version of E16 was generated that retained antigen specificity, avidity and neutralizing activity. In postexposure therapeutic trials in mice, a single dose of humanized E16 protected mice against WNV-induced mortality, and may therefore be a viable treatment option against WNV infection in humans.


Cancer Research | 2007

Fc Optimization of Therapeutic Antibodies Enhances Their Ability to Kill Tumor Cells In vitro and Controls Tumor Expansion In vivo via Low-Affinity Activating Fcγ Receptors

Jeffrey B. Stavenhagen; Sergey Gorlatov; Nadine Tuaillon; Christopher Rankin; Hua Li; Stephen Burke; Ling Huang; Syd Johnson; Ezio Bonvini; Scott Koenig

Monoclonal antibodies (mAb) are widely used in the treatment of non-Hodgkins lymphoma and autoimmune diseases. Although the mechanism of action in vivo is not always known, the therapeutic activity of several approved mAbs depends on the binding of the Fcgamma regions to low-affinity Fcgamma receptors (FcgammaR) expressed on effector cells. We did functional genetic screens to identify IgG1 Fc domains with improved binding to the low-affinity activating Fc receptor CD16A (FcgammaRIIIA) and reduced binding to the low-affinity inhibitory Fc receptor, CD32B (FcgammaRIIB). Identification of new amino acid residues important for FcgammaR binding guided the construction of an Fc domain that showed a dramatically enhanced CD16A binding and greater than a 100-fold improvement in antibody-dependent cell-mediated cytotoxicity. In a xenograft murine model of B-cell malignancy, the greatest enhancement of an Fc-optimized anti-human B-cell mAb was accounted for by improved binding to FcgammaRIV, a unique mouse activating FcgammaR that is expressed by monocytes and macrophages but not natural killer (NK) cells, consistent with experimental and clinical data suggesting that mononuclear phagocytes, effector cells expressing both activating and inhibitory FcgammaR, are critical mediators of B-cell depletion in vivo. By using mice transgenic for human CD16A, enhanced survival was observed due to expression of CD16A-158(phe) on monocytes and macrophages as well as on NK cells in these mice. The design of new generations of improved antibodies for immunotherapy should aim at Fc optimization to increase the engagement of activating FcgammaR present on the surface of tumor-infiltrating effector cell populations.


Blood | 2011

Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma.

Paul A. Moore; Wenjun Zhang; G. Jonah Rainey; Steve Burke; Hua Li; Ling Huang; Sergey Gorlatov; Maria Concetta Veri; Sudeepta Aggarwal; Yinhua Yang; Kalpana Shah; Linda Jin; Sunan Zhang; Leilei He; Tengfei Zhang; Valentina Ciccarone; Scott Koenig; Ezio Bonvini; Syd Johnson

We describe the application of a novel, bispecific antibody platform termed dual affinity retargeting (DART) to eradicate B-cell lymphoma through coengagement of the B cell-specific antigen CD19 and the TCR/CD3 complex on effector T cells. Comparison with a single-chain, bispecific antibody bearing identical CD19 and CD3 antibody Fv sequences revealed DART molecules to be more potent in directing B-cell lysis. The enhanced activity with the CD19xCD3 DART molecules was observed on all CD19-expressing target B cells evaluated using resting and prestimulated human PBMCs or purified effector T-cell populations. Characterization of a CD19xTCR bispecific DART molecule revealed equivalent potency with the CD19xCD3 DART molecule, demonstrating flexibility of the DART structure to support T-cell/B-cell associations for redirected T cell-killing applications. The enhanced level of killing mediated by DART molecules was not accompanied by any increase in nonspecific T-cell activation or lysis of CD19(-) cells. Cell-association studies indicated that the DART architecture is well suited for maintaining cell-to-cell contact, apparently contributing to the high level of target cell killing. Finally, the ability of the CD19xTCR DART to inhibit B-cell lymphoma in NOD/SCID mice when coadministered with human PBMCs supports further evaluation of DART molecules for the treatment of B-cell malignancies.


Immunology | 2007

Monoclonal antibodies capable of discriminating the human inhibitory Fcγ-receptor IIB (CD32B) from the activating Fcγ-receptor IIA (CD32A): biochemical, biological and functional characterization

Maria-Concetta Veri; Sergey Gorlatov; Hua Li; Steve Burke; Syd Johnson; Jeffrey B. Stavenhagen; Kathryn E. Stein; Ezio Bonvini; Scott Koenig

Human CD32B (FcγRIIB), the low‐affinity inhibitory Fcγ receptor (FcγR), is highly homologous in its extracellular domain to CD32A (FcγRIIA), an activating FcγR. Available monoclonal antibodies (mAb) against the extracellular region of CD32B recognize both receptors. Through immunization of mice transgenic for human CD32A, we generated a set of antibodies specific for the extracellular region of CD32B with no cross‐reactivity with CD32A, as determined by enzyme‐linked immunosorbent assay and surface plasmon resonance with recombinant CD32A and CD32B, and by fluorescence‐activated cell sorting analysis of CD32 transfectants. A high‐affinity mAb, 2B6, was used to explore the expression of CD32B by human peripheral blood leucocytes. While all B lymphocytes expressed CD32B, only a fraction of monocytes and almost no polymorphonuclear cells stained with 2B6. Likewise, natural killer cells, which express CD32C, a third CD32 variant, did not react with 2B6. Immune complexes co‐engage the inhibitory receptor with activating Fcγ receptors, a mechanism that limits cell responses. 2B6 competed for immune complex binding to CD32B as a monomeric Fab, suggesting that it directly recognizes the Fc‐binding region of the receptor. Furthermore, when co‐ligated with an activating receptor, 2B6 triggered CD32B‐mediated inhibitory signalling, resulting in diminished release of inflammatory mediators by FcεRI in an in vitro allergy model or decreased proliferation of human B cells induced by B‐cell receptor stimulation. These antibodies form the basis for the development of investigational tools and therapeutics with multiple potential applications, ranging from adjuvants in FcγR‐mediated responses to the treatment of allergy and autoimmunity.


PLOS Pathogens | 2013

Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus

Pankaj Pal; Kimberly A. Dowd; James D. Brien; Melissa A. Edeling; Sergey Gorlatov; Syd Johnson; Iris Lee; Wataru Akahata; Gary J. Nabel; Mareike K. S. Richter; Jolanda M. Smit; Daved H. Fremont; Theodore C. Pierson; Mark T. Heise; Michael S. Diamond

Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans.


Journal of Molecular Biology | 2010

Effector Cell Recruitment with Novel Fv-based Dual-affinity Re-targeting Protein Leads to Potent Tumor Cytolysis and in Vivo B-cell Depletion

Syd Johnson; Stephen Burke; Ling Huang; Sergey Gorlatov; Hua Li; Weili Wang; Wenjun Zhang; Nadine Tuaillon; Jonah Rainey; Bhaswati Barat; Yinhua Yang; Linda Jin; Valentina Ciccarone; Paul A. Moore; Scott Koenig; Ezio Bonvini

Bispecific antibodies capable of redirecting the lytic potential of immune effector cells to kill tumor targets have long been recognized as a potentially potent biological therapeutic intervention. Unfortunately, efforts to produce such molecules have been limited owing to inefficient production and poor stability properties. Here, we describe a novel Fv-derived strategy based on a covalently linked bispecific diabody structure that we term dual-affinity re-targeting (DART). As a model system, we linked an Fv specific for human CD16 (FcgammaRIII) on effector cells to an Fv specific for mouse or human CD32B (FcgammaRIIB), a normal B-cell and tumor target antigen. DART proteins were produced at high levels in mammalian cells, retained the binding activity of the respective parental Fv domains as well as bispecific binding, and showed extended storage and serum stability. Functionally, the DART molecules demonstrated extremely potent, dose-dependent cytotoxicity in retargeting human PBMC against B-lymphoma cell lines as well as in mediating autologous B-cell depletion in culture. In vivo studies in mice demonstrated effective B-cell depletion that was dependent on the transgenic expression of both CD16A on the effector cells and CD32B on the B-cell targets. Furthermore, DART proteins showed potent in vivo protective activity in a human Burkitts lymphoma cell xenograft model. Thus, DART represents a biologically potent format that provides a versatile platform for generating bispecific antibody fragments for redirected killing and, with the selection of appropriate binding partners, applications outside of tumor cell cytotoxicity.


Clinical Cancer Research | 2012

Development of an Fc-Enhanced Anti–B7-H3 Monoclonal Antibody with Potent Antitumor Activity

Deryk Loo; Ralph Alderson; Francine Chen; Ling Huang; Wenjun Zhang; Sergey Gorlatov; Steve Burke; Valentina Ciccarone; Hua Li; Yinhua Yang; Tom Son; Y Chen; Ann Easton; Jonathan C. Li; Jill Rillema; Monica Licea; Claudia Fieger; Tony W. Liang; Jennie P. Mather; Scott Koenig; Stanford J. Stewart; Syd Johnson; Ezio Bonvini; Paul A. Moore

Purpose: The goal of this research was to harness a monoclonal antibody (mAb) discovery platform to identify cell-surface antigens highly expressed on cancer and develop, through Fc optimization, potent mAb therapies toward these tumor-specific antigens. Experimental Design: Fifty independent mAbs targeting the cell-surface immunoregulatory B7-H3 protein were obtained through independent intact cell-based immunizations using human tissue progenitor cells, cancer cell lines, or cell lines displaying cancer stem cell properties. Binding studies revealed this natively reactive B7-H3 mAb panel to bind a range of independent B7-H3 epitopes. Immunohistochemical analyses showed that a subset displayed strong reactivity to a broad range of human cancers while exhibiting limited binding to normal human tissues. A B7-H3 mAb displaying exquisite tumor/normal differential binding was selected for humanization and incorporation of an Fc domain modified to enhance effector-mediated antitumor function via increased affinity for the activating receptor CD16A and decreased binding to the inhibitory receptor CD32B. Results: MGA271, the resulting engineered anti–B7-H3 mAb, mediates potent antibody-dependent cellular cytotoxicity against a broad range of tumor cell types. Furthermore, in human CD16A-bearing transgenic mice, MGA271 exhibited potent antitumor activity in B7-H3–expressing xenograft models of renal cell and bladder carcinoma. Toxicology studies carried out in cynomolgus monkeys revealed no significant test article-related safety findings. Conclusions: This data supports evaluation of MGA271 clinical utility in B7-H3–expressing cancer, while validating a combination of a nontarget biased approach of intact cell immunizations and immunohistochemistry to identify novel cancer antigens with Fc-based mAb engineering to enable potent antitumor activity. Clin Cancer Res; 18(14); 3834–45. ©2012 AACR.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice

Huafang Lai; Michael Engle; Anja Fuchs; Thomas Keller; Syd Johnson; Sergey Gorlatov; Michael S. Diamond; Qiang Chen

Over the past decade, West Nile virus (WNV) has spread to all 48 of the lower United States as well as to parts of Canada, Mexico, the Caribbean, and South America, with outbreaks of neuroinvasive disease occurring annually. At present, no therapeutic or vaccine is available for human use. Epidemics of WNV and other emerging infectious disease threats demand cost-efficient and scalable production technologies that can rapidly transfer effective therapeutics into the clinical setting. We have previously reported that Hu-E16, a humanized anti-WNV mAb, binds to a highly conserved epitope on the envelope protein, blocks viral fusion, and shows promising postexposure therapeutic activity. Herein, we generated a plant-derived Hu-E16 mAb that can be rapidly scaled up for commercial production. Plant Hu-E16 was expressed at high levels within 8 days of infiltration in Nicotiana benthamiana plants and retained high-affinity binding and potent neutralizing activity in vitro against WNV. A single dose of plant Hu-E16 protected mice against WNV-induced mortality even 4 days after infection at rates that were indistinguishable from mammalian-cell-produced Hu-E16. This study demonstrates the efficacy of a plant-produced mAb against a potentially lethal infection several days after exposure in an animal challenge model and provides a proof of principle for the development of plant-derived mAbs as therapy against emerging infectious diseases.


Arthritis & Rheumatism | 2010

Therapeutic control of B cell activation via recruitment of Fcγ receptor IIb (CD32B) inhibitory function with a novel bispecific antibody scaffold

Maria-Concetta Veri; Stephen Burke; Ling Huang; Hua Li; Sergey Gorlatov; Nadine Tuaillon; G. Jonah Rainey; Valentina Ciccarone; Tengfei Zhang; Kay Shah; Linda Jin; Lida Ning; Tamara Minor; Paul A. Moore; Scott Koenig; Syd Johnson; Ezio Bonvini

OBJECTIVE To exploit the physiologic Fcgamma receptor IIb (CD32B) inhibitory coupling mechanism to control B cell activation by constructing a novel bispecific diabody scaffold, termed a dual-affinity retargeting (DART) molecule, for therapeutic applications. METHODS DART molecules were constructed by pairing an Fv region from a monoclonal antibody (mAb) directed against CD32B with an Fv region from a mAb directed against CD79B, the beta-chain of the invariant signal-transducing dimer of the B cell receptor complex. DART molecules were characterized physicochemically and for their ability to simultaneously bind the target receptors in vitro and in intact cells. The ability of the DART molecules to negatively control B cell activation was determined by calcium mobilization, by tyrosine phosphorylation of signaling molecules, and by proliferation and Ig secretion assays. A DART molecule specific for the mouse ortholog of CD32B and CD79B was also constructed and tested for its ability to inhibit B cell proliferation in vitro and to control disease severity in a collagen-induced arthritis (CIA) model. RESULTS DART molecules were able to specifically bind and coligate their target molecules on the surface of B cells and demonstrated a preferential simultaneous binding to both receptors on the same cell. DART molecules triggered the CD32B-mediated inhibitory signaling pathway in activated B cells, which translated into inhibition of B cell proliferation and Ig secretion. A DART molecule directed against the mouse orthologs was effective in inhibiting the development of CIA in DBA/1 mice. CONCLUSION This innovative bispecific antibody scaffold that simultaneously engages activating and inhibitory receptors enables novel therapeutic approaches for the treatment of rheumatoid arthritis and potentially other autoimmune and inflammatory diseases in humans.


Breast Cancer Research | 2011

Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties

Jeffrey L. Nordstrom; Sergey Gorlatov; Wenjun Zhang; Yinhua Yang; Ling Huang; Steve Burke; Hua Li; Valentina Ciccarone; Tengfei Zhang; Jeffrey B. Stavenhagen; Scott Koenig; Stanford J Stewart; Paul A. Moore; Syd Johnson; Ezio Bonvini

IntroductionResponse to trastuzumab in metastatic breast cancer correlates with expression of the high binding variant (158V) of the activating Fcγ receptor IIIA (CD16A). We engineered MGAH22, a chimeric anti-HER2 monoclonal antibody with specificity and affinity similar to trastuzumab, with an Fc domain engineered for increased binding to both alleles of human CD16A.MethodsMGAH22 was compared to an identical anti-HER2 mAb except for a wild type Fc domain. Antibody-dependent cell cytotoxicity (ADCC) assays were performed with HER2-expressing cancer cells as targets and human PBMC or purified NK cells as effectors. Xenograft studies were conducted in mice with wild type murine FcγRs; in mice lacking murine CD16; or in mice lacking murine CD16 but transgenic for human CD16A-158F, the low-binding variant. The latter model reproduces the differential binding between wild type and the Fc-optimized mAb for human CD16A. The JIMT-1 human breast tumor line, derived from a patient that progressed on trastuzumab therapy, was used in these studies. Single and repeat dose toxicology studies with MGAH22 administered intravenously at high dose were conducted in cynomolgus monkeys.ResultsThe optimized Fc domain confers enhanced ADCC against all HER2-positive tumor cells tested, including cells resistant to trastuzumabs anti-proliferative activity or expressing low HER2 levels. The greatest improvement occurs with effector cells isolated from donors homozygous or heterozygous for CD16A-158F, the low-binding allele. MGAH22 demonstrates increased activity against HER2-expressing tumors in mice transgenic for human CD16A-158F. In single and repeat-dose toxicology studies in cynomolgus monkeys, a species with a HER2 expression pattern comparable to that in humans and Fcγ receptors that exhibit enhanced binding to the optimized Fc domain, MGAH22 was well tolerated at all doses tested (15-150 mg/kg) and exhibited pharmacokinetic parameters similar to that of other anti-HER2 antibodies. Induction of cytokine release by MGAH22 in vivo or in vitro was similar to that induced by the corresponding wild type mAb or trastuzumab.ConclusionsThe data support the clinical development of MGAH22, which may have utility in patients with low HER2 expressing tumors or carrying the CD16A low-binding allele.

Collaboration


Dive into the Sergey Gorlatov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ezio Bonvini

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Koenig

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Steve Burke

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Valentina Ciccarone

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ralph Alderson

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge