Sergey Koshel
Moscow State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergey Koshel.
PLOS Biology | 2010
Wolfgang Haak; Oleg Balanovsky; Juan J. Sanchez; Sergey Koshel; Valery Zaporozhchenko; Christina J. Adler; Clio Der Sarkissian; Guido Brandt; Carolin Schwarz; Nicole Nicklisch; Veit Dresely; Barbara Fritsch; Elena Balanovska; Richard Villems; Harald Meller; Kurt W. Alt; Alan Cooper
The first farmers from Central Europe reveal a genetic affinity to modern-day populations from the Near East and Anatolia, which suggests a significant demographic input from this area during the early Neolithic.
Molecular Biology and Evolution | 2011
Oleg Balanovsky; Khadizhat Dibirova; Anna Dybo; Oleg Mudrak; Svetlana Frolova; Elvira Pocheshkhova; Marc Haber; Daniel E. Platt; Theodore G. Schurr; Wolfgang Haak; Marina Kuznetsova; Magomed Radzhabov; Olga Balaganskaya; A. G. Romanov; Tatiana Zakharova; David F. Soria Hernanz; Pierre Zalloua; Sergey Koshel; Merritt Ruhlen; Colin Renfrew; R. Spencer Wells; Chris Tyler-Smith; Elena Balanovska
We analyzed 40 single nucleotide polymorphism and 19 short tandem repeat Y-chromosomal markers in a large sample of 1,525 indigenous individuals from 14 populations in the Caucasus and 254 additional individuals representing potential source populations. We also employed a lexicostatistical approach to reconstruct the history of the languages of the North Caucasian family spoken by the Caucasus populations. We found a different major haplogroup to be prevalent in each of four sets of populations that occupy distinct geographic regions and belong to different linguistic branches. The haplogroup frequencies correlated with geography and, even more strongly, with language. Within haplogroups, a number of haplotype clusters were shown to be specific to individual populations and languages. The data suggested a direct origin of Caucasus male lineages from the Near East, followed by high levels of isolation, differentiation, and genetic drift in situ. Comparison of genetic and linguistic reconstructions covering the last few millennia showed striking correspondences between the topology and dates of the respective gene and language trees and with documented historical events. Overall, in the Caucasus region, unmatched levels of gene-language coevolution occurred within geographically isolated populations, probably due to its mountainous terrain.
PLOS Genetics | 2013
Clio Der Sarkissian; Oleg Balanovsky; Guido Brandt; Valery Khartanovich; Alexandra P. Buzhilova; Sergey Koshel; Valery Zaporozhchenko; Detlef Gronenborn; Vyacheslav Moiseyev; Eugen Kolpakov; Vladimir Shumkin; Kurt W. Alt; Elena Balanovska; Alan Cooper; Wolfgang Haak
North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across Eurasia. It contributes to the description of the spatio-temporal distribution of mitochondrial diversity and will be of significance for future reconstructions of the history of Europeans.
PLOS ONE | 2015
Alena Kushniarevich; Olga Utevska; Marina Chuhryaeva; Anastasia Agdzhoyan; Khadizhat Dibirova; Ingrida Uktveryte; Märt Möls; Lejla Mulahasanovic; Andrey Pshenichnov; Svetlana Frolova; Andrey Shanko; Ene Metspalu; Maere Reidla; Kristiina Tambets; Erika Tamm; Sergey Koshel; Valery Zaporozhchenko; Lubov Atramentova; Vaidutis Kučinskas; Oleg Davydenko; O. V. Goncharova; Irina Evseeva; Michail Churnosov; Elvira Pocheshchova; Bayazit Yunusbayev; Elza Khusnutdinova; Damir Marjanović; Pavao Rudan; Siiri Rootsi; Nick Yankovsky
The Slavic branch of the Balto-Slavic sub-family of Indo-European languages underwent rapid divergence as a result of the spatial expansion of its speakers from Central-East Europe, in early medieval times. This expansion–mainly to East Europe and the northern Balkans–resulted in the incorporation of genetic components from numerous autochthonous populations into the Slavic gene pools. Here, we characterize genetic variation in all extant ethnic groups speaking Balto-Slavic languages by analyzing mitochondrial DNA (n = 6,876), Y-chromosomes (n = 6,079) and genome-wide SNP profiles (n = 296), within the context of other European populations. We also reassess the phylogeny of Slavic languages within the Balto-Slavic branch of Indo-European. We find that genetic distances among Balto-Slavic populations, based on autosomal and Y-chromosomal loci, show a high correlation (0.9) both with each other and with geography, but a slightly lower correlation (0.7) with mitochondrial DNA and linguistic affiliation. The data suggest that genetic diversity of the present-day Slavs was predominantly shaped in situ, and we detect two different substrata: ‘central-east European’ for West and East Slavs, and ‘south-east European’ for South Slavs. A pattern of distribution of segments identical by descent between groups of East-West and South Slavs suggests shared ancestry or a modest gene flow between those two groups, which might derive from the historic spread of Slavic people.
PLOS ONE | 2015
Oleg Balanovsky; Maxat Zhabagin; A. T. Agdzhoyan; Marina Chukhryaeva; Valery Zaporozhchenko; Olga Utevska; Gareth Highnam; Zhaxylyk Sabitov; Elliott Greenspan; Khadizhat Dibirova; R. A. Skhalyakho; Marina Kuznetsova; Sergey Koshel; Yuldash Yusupov; Pagbajabyn Nymadawa; Zhaxybay Zhumadilov; Elvira Pocheshkhova; Marc Haber; Pierre Zalloua; Levon Yepiskoposyan; Anna Dybo; Chris Tyler-Smith; Elena Balanovska
Y-chromosomal haplogroup G1 is a minor component of the overall gene pool of South-West and Central Asia but reaches up to 80% frequency in some populations scattered within this area. We have genotyped the G1-defining marker M285 in 27 Eurasian populations (n= 5,346), analyzed 367 M285-positive samples using 17 Y-STRs, and sequenced ~11 Mb of the Y-chromosome in 20 of these samples to an average coverage of 67X. This allowed detailed phylogenetic reconstruction. We identified five branches, all with high geographical specificity: G1-L1323 in Kazakhs, the closely related G1-GG1 in Mongols, G1-GG265 in Armenians and its distant brother clade G1-GG162 in Bashkirs, and G1-GG362 in West Indians. The haplotype diversity, which decreased from West Iran to Central Asia, allows us to hypothesize that this rare haplogroup could have been carried by the expansion of Iranic speakers northwards to the Eurasian steppe and via founder effects became a predominant genetic component of some populations, including the Argyn tribe of the Kazakhs. The remarkable agreement between genetic and genealogical trees of Argyns allowed us to calibrate the molecular clock using a historical date (1405 AD) of the most recent common genealogical ancestor. The mutation rate for Y-chromosomal sequence data obtained was 0.78×10-9 per bp per year, falling within the range of published rates. The mutation rate for Y-chromosomal STRs was 0.0022 per locus per generation, very close to the so-called genealogical rate. The “clan-based” approach to estimating the mutation rate provides a third, middle way between direct farther-to-son comparisons and using archeologically known migrations, whose dates are subject to revision and of uncertain relationship to genetic events.
Annals of Human Genetics | 2012
Marc Haber; Sonia Youhanna; Oleg Balanovsky; Stephanie Saade; Begoña Martínez-Cruz; Michella Ghassibe-Sabbagh; Nabil Shasha; Raed Osman; Hamid el Bayeh; Sergey Koshel; Valery Zaporozhchenko; Elena Balanovska; David F. Soria-Hernanz; Daniel E. Platt; Pierre Zalloua
Population origins and ancestry have previously been found to be important determinants of coronary artery disease (CAD). This study investigates associations of Lebanese mitochondrial DNA lineages with CAD and studies their correlation with other populations, exploring population structures that may infer mitochondria functional associations and reveal population movements and origins. Sequencing the mitochondrial hypervariable sequence 1 (HVS‐1) of 363 controls and 448 cases revealed that haplogroup W was more frequent (P= 0.013) in cases compared to controls, and was associated with increased risk of CAD (OR = 5.50, 95% CI = 1.50–35.30, P= 0.026) among Lebanese samples. Haplogroup A was only found in controls (P= 0.029). We have detected stronger geographic correlation between haplogroup W and CAD (Pearsons r= 0.316, P < 0.001) than between haplogroup A and CAD (r= 0.149, P < 0.001). HVS‐1 phylogenetic network of haplogroup W shows controls are restricted to European clusters while cases belong mostly to Middle Eastern natives. The network of haplogroup A shows that the controls belong to a cluster dominated by Central Asians. Our results show evidence of a gene flow into Lebanon, creating CAD‐associated population structures that are similar to those in the source populations, maintained by limited admixture, and probably encompassing variations on the nuclear and/or the mitochondrial genome that are correlated with the disease.
Human Genetics | 2017
O. P. Balanovsky; Marina Chukhryaeva; Valery Zaporozhchenko; Vadim Urasin; Maxat Zhabagin; A. Hovhannisyan; A. T. Agdzhoyan; Khadizhat Dibirova; Marina Kuznetsova; Sergey Koshel; Elvira Pocheshkhova; I. Alborova; R. A. Skhalyakho; Olga Utevska; Kh. Mustafin; Levon Yepiskoposyan; Chris Tyler-Smith; E. V. Balanovska
Y-chromosomal variation in West Asian populations has so far been studied in less detail than in the neighboring Europe. Here, we analyzed 598 Y-chromosomes from two West Asian subregions—Transcaucasia and the Armenian plateau—using 40 Y-SNPs and 17 Y-STRs and combined them with previously published data from the region. The West Asian populations fell into two clusters: upland populations from the Anatolian, Armenian and Iranian plateaus, and lowland populations from the Levant, Mesopotamia and the Arabian Peninsula. This geographic subdivision corresponds with the linguistic difference between Indo-European and Turkic speakers, on the one hand, and Semitic speakers, on the other. This subdivision could be traced back to the Neolithic epoch, when upland populations from the Anatolian and Iranian plateaus carried similar haplogroup spectra but did not overlap with lowland populations from the Levant. We also found that the initial gene pool of the Armenian motherland population has been well preserved in most groups of the Armenian Diaspora. In view of the contribution of West Asians to the autosomal gene pool of the steppe Yamnaya archaeological culture, we sequenced a large portion of the Y-chromosome in haplogroup R1b samples from present-day East European steppe populations. The ancient Yamnaya samples are located on the “eastern” R-GG400 branch of haplogroup R1b-L23, showing that the paternal descendants of the Yamnaya still live in the Pontic steppe and that the ancient Yamnaya population was not an important source of paternal lineages in present-day West Europeans.
BMC Evolutionary Biology | 2017
O. P. Balanovsky; Vladimir Gurianov; Valery Zaporozhchenko; Olga Balaganskaya; Vadim Urasin; Maxat Zhabagin; Viola Grugni; Rebekah Canada; Nadia Al-Zahery; Alessandro Raveane; Shao-Qing Wen; Shi Yan; Xianpin Wang; Pierre Zalloua; Abdullah Marafi; Sergey Koshel; Ornella Semino; Chris Tyler-Smith; E. V. Balanovska
BackgroundThe Y-chromosome haplogroup Q has three major branches: Q1, Q2, and Q3. Q1 is found in both Asia and the Americas where it accounts for about 90% of indigenous Native American Y-chromosomes; Q2 is found in North and Central Asia; but little is known about the third branch, Q3, also named Q1b-L275. Here, we combined the efforts of population geneticists and genetic genealogists to use the potential of full Y-chromosome sequencing for reconstructing haplogroup Q3 phylogeography and suggest possible linkages to events in population history.ResultsWe analyzed 47 fully sequenced Y-chromosomes and reconstructed the haplogroup Q3 phylogenetic tree in detail. Haplogroup Q3-L275, derived from the oldest known split within Eurasian/American haplogroup Q, most likely occurred in West or Central Asia in the Upper Paleolithic period. During the Mesolithic and Neolithic epochs, Q3 remained a minor component of the West Asian Y-chromosome pool and gave rise to five branches (Q3a to Q3e), which spread across West, Central and parts of South Asia. Around 3–4 millennia ago (Bronze Age), the Q3a branch underwent a rapid expansion, splitting into seven branches, some of which entered Europe. One of these branches, Q3a1, was acquired by a population ancestral to Ashkenazi Jews and grew within this population during the 1st millennium AD, reaching up to 5% in present day Ashkenazi.ConclusionsThis study dataset was generated by a massive Y-chromosome genotyping effort in the genetic genealogy community, and phylogeographic patterns were revealed by a collaboration of population geneticists and genetic genealogists. This positive experience of collaboration between academic and citizen science provides a model for further joint projects. Merging data and skills of academic and citizen science promises to combine, respectively, quality and quantity, generalization and specialization, and achieve a well-balanced and careful interpretation of the paternal-side history of human populations.
Russian Journal of Genetics | 2016
Marina Chukhryaeva; I. O. Ivanov; Svetlana Frolova; Sergey Koshel; Olga Utevska; R. A. Skhalyakho; A. T. Agdzhoyan; Yu. V. Bogunov; Elena Balanovska; Oleg Balanovsky
STR haplotypes of the Y chromosome are widely used as effective genetic markers in studies of human populations and in forensic DNA analysis. The task often arises to compare the spectrum of haplotypes in individuals or entire populations. Performing this task manually is too laborious and thus unrealistic. We propose an algorithm for counting similarity between STR haplotypes. This algorithm is suitable for massive analyses of samples. It is implemented in the computer program Haplomatch, which makes it possible to find haplotypes that differ from the target haplotype by 0, 1, 2, 3, or more mutational steps. The program may operate in two modes: comparison of individuals and comparison of populations. Flexibility of the program (the possibility of using any external database), its usability (MS Excel spreadsheets are used), and the capability of being applied to other chromosomes and other species could make this software a new useful tool in population genetics and forensic and genealogical studies. The Haplomatch software is freely available on our website www.genofond.ru. The program is applied to studying the gene pool of Cossacks. Experimental analysis of Y-chromosomal diversity in a representative set (N = 131) of Upper Don Cossacks is performed. Analysis of the STR haplotypes detects genetic proximity of Cossacks to East Slavic populations (in particular, to Southern and Central Russians, as well as to Ukrainians), which confirms the hypothesis of the origin of the Cossacks mainly due to immigration from Russia and Ukraine. Also, a small genetic influence of Turkicspeaking Nogais is found, probably caused by their occurrence in the Don Voisko as part of the Tatar layer. No similarities between haplotype spectra of Cossacks and Caucasus populations are found. This case study demonstrates the effectiveness of the Haplomatch software in analyzing large sets of STR haplotypes.
Russian Journal of Genetics | 2011
Oleg Balanovsky; Sergey Koshel; Valery Zaporozhchenko; Andrey Pshenichnov; Svetlana Frolova; M. A. Kuznetsova; E. E. Baranova; I. E. Teuchezh; A. A. Kuznetsova; M. V. Romashkina; Olga Utevska; Michail Churnosov; Richard Villems; Elena Balanovska
Yu.P. Altukhov suggested that heterozygosity is an indicator of the state of the gene pool. The idea and a linked concept of genetic ecological monitoring were applied to a new dataset on mtDNA variation in East European ethnic groups. Haplotype diversity (an analog of the average heterozygosity) was shown to gradually decrease northwards. Since a similar trend is known for population density, interlinked changes were assumed for a set of parameters, which were ordered to form a causative chain: latitude increases, land productivity decreases, population density decreases, effective population size decreases, isolation of subpopulations increases, genetic drift increases, and mtDNA haplotype diversity decreases. An increase in genetic drift increases the random inbreeding rate and, consequently, the genetic load. This was confirmed by a significant correlation observed between the incidence of autosomal recessive hereditary diseases and mtDNA haplotype diversity. Based on the findings, mtDNA was assumed to provide an informative genetic system for genetic ecological monitoring; e.g., analyzing the ecology-driven changes in the gene pool.